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Abstract—This paper presents DISC, a dataset of millimeter- 
wave channel impulse response measurements for integrated 
human activity sensing and communication. This is the first 
dataset collected with a software-defined radio testbed that 
transmits 60 GHz IEEE 802-11ay-compliant packets and esti- 
mates the channel response including scattered signals off the 
moving body parts of subjects moving in an indoor environment. 
The provided data consists of three parts, for more than 2 
hours of channel measurements with high temporal resolution 
(0.27 ms inter-packet time). DISC contains the contribution of 
7 subjects performing 5 different activities, and includes data 
collected from two distinct environments. Unlike available radar- 
based millimeter-wave sensing datasets, our measurements are 
collected using uniform packet transmission times and sparse 
traffic patterns from real Wi-Fi deployments. We develop, train, 
and release open-source baseline algorithms based on DISC to 
perform human sensing tasks. Our results demonstrate that DISC 
can serve as a multi-purpose benchmarking tool for machine 
learning-based human activity recognition, radio frequency gait 
analysis, and sparse sensing algorithms for next-generation inte- 
grated sensing and communications. 

Index Terms—Integrated Sensing and Communication, 
millimeter-wave, human activity recognition, gait identification, 
micro-Doppler, dataset. 

 
I. INTRODUCTION 

ESPITE the huge interest towards Integrated Sensing 

And Communication (ISAC) systems working in the 

Millimeter-Wave (mmWave) frequency band, there is a lack of 

public datasets in this regard. Thus, it is hard for researchers 

to develop and validate signal processing or Machine Learn- 

ing (ML)-based ISAC algorithms beyond simulation environ- 

ments. Unlike widely studied Wi-Fi sensing in the sub-6 GHz 

band, mmWave ISAC lacks affordable commercial devices, 

tools for the extraction of Channel State Information (CSI) [1], 

so it has mostly relied on simulation tools [2]. Indeed, most 

of the experimental works in the field use mmWave radar 

devices which employ specifically optimized waveforms for 

each application and are inapt for communications [3]. More- 

over, each work typically uses a different dataset and baseline 

algorithms. With the rising importance of Deep Learning (DL) 

for radio signal processing, it becomes key to foster easier 

comparison to state-of-the-art algorithms on common data. 

This is especially true since physical-layer radio signals are 

cumbersome to collect and store, due to the high sampling 

rates and data volume. 

Challenges. In light of the above discussion, we identify 

two main unaddressed challenges we solve with the dataset 

† These authors are with the Department of Information Engineering, 
University of Padova, Italy (email: jacopo.pegoraro@unipd.it). 
∗ These authors are with the IMDEA Networks Institute, Madrid, Spain. 

and algorithms presented in this paper. First, there is a lack 

of datasets that contain radio signal traces to be used for 

the design and validation of mmWave ISAC algorithms. Key 

aspects are the size and diversity of such datasets, as most 

wireless sensing applications require data-hungry DL models 

to extract complex features from the reflected signal while 

generalizing to different environments and sensing subjects. 

Moreover, the data traces should present the typical character- 

istics of ISAC systems that can not be found in radar datasets, 

such as (i) diverse, irregular, and sparse traffic patterns, and (ii) 

the usage of standard-compliant communication waveforms. 

Existing efforts in this sense are limited to simulation tools 

that lack the complexity and hardware impairments of real 

measurements [2]. 

Second, open-source benchmark signal processing and DL 

algorithms to perform sensing applications are needed. These 

should encompass the variety of ISAC applications, such as 

people localization and tracking, Human Activity Recognition 

(HAR), and gait identification. Moreover, challenging sens- 

ing scenarios characterized by resource-constrained channel 

acquisition and diverse multipath environments should be 

investigated, building on public baseline algorithms. Solving 

these challenges is a key enabler for ISAC research, which has 

been identified as a core feature of next-generation 6G mobile 

networks [4] and Wireless Local Area Networks (WLANs) [5]. 

DISC. In this paper we present DISC [6], a mmWave 

ISAC dataset containing Channel Impulse Response (CIR) 

measurements from standard-compliant Single Carrier (SC) 

IEEE 802.11ay packets. The CIR sequences contain backscat- 

tered copies of the transmitted packets on people moving in an 

indoor environment. We solve both open challenges by (i) pro- 

viding a large-scale dataset of realistic channel estimates to 

perform human sensing tasks, called DISC, containing 60 GHz 

IEEE 802.11ay Wi-Fi channel estimates including different 

people, environments, and traffic patterns [6], and (ii) making 

a set of benchmark algorithms for people tracking, human 

activity recognition, and sparse micro-Doppler (𝜇D) spectrum 

estimation available to the community, open-sourcing their 

code implementation. 

The dataset consists of three parts. The first one, DISC-A, 

contains more than 1 hour of IEEE 802.11ay CIR sequences 

including backscattered signals from 7 subjects performing 4 

different activities in front of the ISAC transceiver. This part 

is characterized by uniform packet transmission times, with a 

granularity of over 3 CIR estimates per millisecond, yielding 

extremely high temporal resolution. The second part, DISC-B, 

contains 40 minutes of CIR sequences obtained at uniform 

packet transmission times, with 1 to 5 subjects concurrently, 
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freely moving in the environment and performing 5 different 

activities. Moreover, in this second part, we use the directional 

transmission capabilities of our testbed to allow the estimation 

of the Angle of Arrival (AoA) of the backscattered signal, 

which enables tracking the subject across time. DISC-B also 

includes data collected in a different test environment, to 

offer the opportunity to test the generalization capabilities of 

DL-based sensing algorithms. In the third part, DISC-C, we 

use open-source data on Wi-Fi traffic patterns to tune the 

inter-packet duration and collect more realistic sparse CIR 

sequences. The resulting CIR measurements, for a total of 

9 minutes, are collected with a single subject performing the 

same 4 activities included in the first part. 

Usage. We envision our dataset and algorithms being used 

to train and validate new fine-grained sensing approaches. 

Possible use cases include, but are not limited to, tracking of 

multiple subjects, extraction of the 𝜇D signatures of human 

movement from the CIR [7], which enables DL-based HAR 

[3], and person identification from individual gait features 

[8]. In addition, advanced ISAC problems such as the sparse 

reconstruction of sensing parameters from irregularly sam- 

pled signal traces, domain adaptation from regularly sampled 

signals to sparse ones, and target tracking under missing 

measurements can also be tackled using DISC [9]. Moreover, 

DISC is aligned with ISAC standardization efforts by the 

3GPP, IEEE 802.11bf, and ETSI, which have shown interest 

in modeling human-related propagation characteristics of the 

channel [4]. In this sense, the availability of experimental 

data involving reflections on human subjects can support the 

channel modeling effort. 

The paper is organized as follows. In Section II-A we dis- 

cuss the necessary preliminaries regarding the IEEE 802.11ay 

CIR, while in Section II we present the experimental setup 

including the ISAC Software Defined Radio (SDR) testbed 

and the parameters of the experiments. Section III contains an 

overview of the dataset and in Section IV we discuss possible 

research problems that can be addressed by using it. Finally, 

in Section V we present results obtained with the proposed 

benchmark algorithms on DISC. Concluding remarks are given 

in Section VII. 

 
II. EXPERIMENTAL TESTBED DECRIPTION 

In this section, we describe the experimental setup used to 

collect the dataset, including the ISAC testbed, the system 

parameters, and the collection environment. 

 
A. Physical layer system operation and parameters 

Our dataset contains CIR measurements collected according 

to the IEEE 802.11ay standard [10], using a SC waveform in 

single-input single-output mode. The CIR contains the com- 

plex channel gains for different delays. The delay resolution 

of the system is given by Δ𝜏 = 1/𝐵 with 𝐵 = 1.76 GHz 

being the bandwidth of the transmitted signal, spanning an 
IEEE 802.11ay channel. As a result, the delay resolution of 

the system is given by Δ𝜏 = 1/𝐵 = 0.568 ns. In IEEE 802.11ay 

the communication is highly directional, thanks to the use of 
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Figure 1: Data collection environments. 

 

 
phased antenna arrays with narrow Beam Patterns (BPs). In ad- 

dition, in-packet beam tracking is supported [10], which allows 

switching the BP within a single packet. The different BPs 

used illuminate targets located in the environment differently, 

thus introducing diversity that can be exploited to compute 

the AoA of the propagation paths with high accuracy, see, 

e.g., [11]. From the beamwidth of the BPs, one can obtain 

the angular resolution of the system, Δ𝜃, which is approxi- 

mately 8◦. Beam tracking is done by appending a specific field 

of pilot symbols, called TRN field, to the packet. A TRN field 

is composed of a tunable number of TRN units, each formed 

by 6 complementary Golay sequences of type a (“Ga”) and b 

(“Gb”) Golay sequences of 128 𝜋/2 BPSK modulated samples, 

for a total of 768 samples [10]. At the receiver, the signal 

corresponding to each TRN unit is correlated with the known 

pilot sequence to estimate the CIR [12]. Note that exploiting 

TRN fields with different BPs for sensing is also featured in 

IEEE 802.11bf, so DISC can be used to test its physical layer 

sensing capabilities. 

We denote by 𝑇 the (tunable) Inter-Frame Spacing (IFS), 

i.e., the time interval between two subsequent channel esti- 

mation instants using pilot signals from different packets. For 

reliable 𝜇D extraction using the Short Time Fourier Transform 

(STFT) without aliasing [11], it is advisable to set 𝑇 to a value 

that allows capturing the range of velocities typically covered 

by human movement in indoor environments. These can reach 

up to ±5 m/s for running or other fast movements [8]. In our 

dataset, when the IFS is constant, we set it to 𝑇 = 0.27 ms, 

which is suitable to capture 𝑣max = ±𝑐/(4 𝑓𝑜𝑇 ) ≈ ±4.48 m/s. 

When using a STFT window 𝑊 = 64, one obtains a velocity 

resolution of Δ𝑣 = 𝑐/(2 𝑓𝑜𝑊𝑇) ≈ 0.14 m/s. In the sequences 

with irregular inter-packet time, instead, this is determined 

by realistic traffic patterns of real Wi-Fi access points, as 

described in Section III. We use periodically transmitted in- 

packet beam tracking frames with a variable number of TRN 

units, depending on the part of the dataset considered, and 

antenna beams covering a Field-of-View (FoV) of [−45◦, 45◦]. 

 
B. Data collection environments 

The experiments included in DISC-A, most of DISC-B, 

and DISC-C are performed in a laboratory of 6.1 × 7.7 me- 
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Figure 2: Testbed used in the data collection. 

 
 

ters (room A) with a complex multi-path environment due 

to additional scattering and reflections caused by furniture, 

computers, screens, and a wide whiteboard, as shown in Fig. 1 

on the left. The testbed is positioned at one of the two shorter 

sides of the room, oriented towards the whiteboard. This leaves 

sufficient space for the subjects to move and perform the 

different activities included in the dataset. On the right of 

Fig. 1 we show the second room used in our dataset (room 

B), which is a 10.7 × 6 meeting room. DISC-B includes CIR 

measurements collected in room B to allow testing ISAC 

algorithm across different environments. 

 
C. Full-duplex ISAC testbed implementation 

To collect the dataset, we implement a mmWave ISAC 

testbed using the open-source mm-FLEX platform [13] as a 

baseline design. The baseband processor is based on Vadatech 

slot cards, integrating a Xilinx UltraScale Field Programmable 

Gate Array (FPGA), multi-Giga-sample AD/DA converters, 

20 GB of RAM, and a high-end microprocessor. The mmWave 

front-end includes a Sivers EVK06002 development kit with 

60 GHz up/down converters to implement IEEE 802.11ad/ay 

channels. It integrates phased arrays including 16 antenna 

elements for both the transmitter (TX) and the receiver (RX) 

Radio Frequency (RF) chains. These are equipped with phase 

shifters, enabling analog beamforming. The main components 

of the testbed are shown in Fig. 2. 

For the data collection, we configure the Analog-to- 

Digital/Digital-to-Analog (AD/DA) converters to operate at 

3.52 Gsps sampling frequency. We enable fast antenna beam 

reconfiguration capability during the transmission of a packet 

to estimate the CIRs using different BP shapes in the same 

packet. To provide the required ISAC functionality, we en- 

hance the testbed with new features, including full-duplex 

capability, synchronization between TX and RX datapaths, and 

variable IFS to emulate real traffic patterns. 

We modified the testbed to support CIR data collection 

with variable IFS, supporting Wi-Fi traffic patterns. Further 

details regarding this aspect and how to implement full-duplex 

capabilities are given in [6]. 

To enable AoA estimation techniques [13], we measure the 

BPs in the codebook of the Sivers kits in a semi-anechoic 

chamber, with a granularity of 0.5◦ [13]. For the experiments, 

we select a subset of BPs that covers uniformly the FoV of 

the antenna, which are shown in Fig. 2. 

As part of DISC, we provide the bitstream and executable 

software for the baseband processor, as well as MATLAB© 

scripts to generate packets and process captured data from the 

testbed [6]. 

 
III. DISC OVERVIEW 

In this section, we provide a high-level overview of the 

DISC dataset. DISC is available at [6], together with extensive 

documentation, and is complemented by a code repository 

containing Python code to process the data and replicate our 

benchmarks in Section V. Informed consent was obtained from 

all the subjects involved in the data collection. 

DISC consists of three parts, detailed in the following. 

1) DISC-A: Uniform IFS, forward-looking, multiple sub- 

jects. The first part of the dataset, termed DISC-A, contains 

433 CIR sequences for a total of over 1 hour of time. Such 

sequences are collected with uniform IFS 𝑇 = 0.27 ms and 

contain the contribution of 7 different subjects performing 

4 activities: walking, running, sitting down/standing up, and 

waving hands. Each sequence is collected with a single 

subject present in room A. Channel estimation is performed 

by appending a single TRN unit to each transmitted packet, 

using a BP pointing forward, along the antenna boresight. 

2) DISC-B: Uniform IFS, multiple BPs, multiple subjects 

moving freely and concurrently. In the second part of the 

dataset, we provide over 40 minutes of CIR sequences col- 

lected with the same uniform IFS used in DISC-A. However, 

in DISC-B we append 12 TRN fields to each packet, steering 

the BP in each of them to scan the whole field of view of the 

antenna. This enables the estimation of the AoA of the signals, 

and hence to localize and track subjects in the environment. 

The CIR sequences in DISC-B are collected across 7 

different days. A first set of CIR sequences contains a single 

subject moving freely in the room and performing one of 5 

possible activities: walking, running, sitting down/standing up, 

waving hands, and standing still. A second set of sequences 

contains multiple subjects concurrently present in room A 

(up to a maximum of 5 subjects), in different locations, 

and performing different activities. This part of the dataset 

also includes measurements obtained with a second ISAC 

transceiver, located 1.8 m from the main one. This can be 

leveraged to explore sensing algorithms that exploit multiple 

points of view on the environment. Finally, DISC-B provides 

data collected in room B, to enable testing ISAC algorithms 

across different multipath environments. 

3) DISC-C: Non-uniform IFS, multiple BPs, a single sub- 

ject moving freely. In the third part of DISC, we provide 

sparse CIR measurements collected according to the traffic 

patterns of real Wi-Fi Access Points (APs). To collect such 

measurements, we exploit the configurable IFS provided by 
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our testbed and schedule the packet transmissions using the 

public pdx/vwave dataset [14]. This contains real traffic 

traces captured in different environments using sub-6 GHz Wi- 

Fi APs. For our experiments, we select representative traces 

of three types of real-life environments: a computer science 

department, a library, and an internet cafe. In addition to the 

packet transmissions contained in the pdx/vwave traces, the 

sparse sequences contain additional transmissions (injections) 

following the protocol described in [9]. 

In DISC-C, we collect data in room A, using the same chan- 

nel estimation procedure used in DISC-B, i.e., transmitting 12 

TRN units with different BPs for AoA estimation. A single 

subject is present in each CIR sequence, performing the same 

4 activities of DISC-A. 

Note that, in the dataset collection, each subject was asked 

to perform one of the pre-defined activities given above. 

However, each subject performs the activity in a unique way, 

introducing subject-specific diversity. For all the three parts 

of DISC, we provide (i) the raw CIR measurements as multi- 

dimensional arrays in MAT-file format (.mat) and (ii) pre- 

computed 𝜇D spectrograms that can be readily used to develop 

ML-based HAR or person identification algorithms. 

 
IV. ENVISIONED USE CASES 

We identify and discuss five main possible use cases for the 

dataset. 

1) People tracking: Estimating the position of people 

across time serves as an enabler for a vast number of ap- 

plications including people flow control, remote healthcare, 

and intrusion detection, among others. In ISAC, people cause 

scattering components that are detected as energy peaks in the 

channel response and can be used to localize and track people 

across time. People tracking is particularly challenging in 

multitarget scenarios, where multiple people are concurrently 

moving in the same indoor space. This is especially true for 

mmWave signals, which are easily blocked by the human body 

and are thus prone to mutual occlusion among the subjects. 

DISC-B contains CIR sequences collected in such challenging 

multitarget situations, with up to 5 subjects. 

Moreover, under sparse traffic patterns, people tracking 

algorithms deserve additional attention as not having regularly 

sampled measurements can degrade the tracking accuracy. 

Standard methods based on the Extended Kalman Filter (EKF) 

applied to the range-angle position measurements may need to 

be adapted [11]. DISC-C allows designing and validating new 

people tracking methods based on ML and traditional signal 

processing. 

2) 𝜇D reconstruction: Human movement causes a complex 

superposition of multiple Doppler shifts on the received signal, 

caused by the different body parts, i.e., a 𝜇D effect. Such 

𝜇D can be extracted from a sequence of uniformly spaced 

CIR estimates, as shown in [11], by applying STFT. The 

resulting spectrogram serves as a feature of human movement 

that can be used for downstream tasks such as HAR and person 

identification. 

In the more realistic case where the CIR estimates are not 

uniformly spaced, standard STFT would yield a corrupted 

𝜇D spectrogram. Therefore, more advanced 𝜇D extraction 

should be applied, see for example the one in [9], based 

on Compressed Sensing (CS). For further details on 𝜇D 

signatures, including how to extract them from uniformly 

sampled and sparse measurements, we refer to [9, 11]. 

Using DISC-C, which contains CIR measurements collected 

with real IFS from Wi-Fi traffic, one can develop and test novel 

sparse reconstruction algorithms to extract 𝜇D signatures of 

the subjects’ movement. As a benchmark solution, we refer to 

[9]. This is an important research direction to enable ISAC in 

realistic scenarios where the inter-packet duration is dictated 

by communication rather then by the sensing performance. 

3) Activity recognition in ISAC: Our dataset provides the 

opportunity to validate HAR ML algorithms on the CIR data. 

A ML classifier can be trained to distinguish between different 

activities performed by the subjects, based on suitable features 

extracted from the CIR such as the 𝜇D signatures of the 

movement. A common signal feature that is used for HAR 

is the 𝜇D spectrogram, which can be computed as detailed in 

point 2). 

4) Gait-based identification in ISAC: By selecting the mea- 

surements containing the walking activity from the 7 subjects 

in DISC-A, one can train and validate classifiers to perform 

subject identification based on their gait. A typical way is to 

extract the 𝜇D signature of the gait for each person and train 

a classifier to learn subject-specific patterns that reveal their 

identity. This is a challenging task that requires fine-grained 

feature extraction capabilities and is typically performed with 

DL methods. Ours is the first dataset to enable such task with 

IEEE 802.11ay CIR sequences, which makes it substantially 

different from existing mmWave radar datasets. 

5) Domain adaptation to sparse data: A more challenging 

task entails training the classifiers on the uniformly sampled 

data, and then testing it on the sparse CIR measurements. This 

requires a higher generalization capability as the reconstructed 

𝜇D signatures from sparse data have a lower (and varying) 

resolution. Domain adaptation techniques could be applied to 

solve this problem. 

In the next section, we provide benchmark results for use 

cases 1), 2), 3), and 5), since they represent the most widely 

studied ISAC applications. 

 
V. EXAMPLE RESULTS 

This section presents benchmark algorithms and example 

results based on DISC. We release their code implementation 

on GitLab, the link is provided at [6]. 

 
A. People tracking 

From the raw IQ samples available in the dataset, it is 

possible to perform localization and tracking of people in 

the environment. This is achieved by using the CIR estimates 

collected over time, which must be processed in three steps 

explained in [11]: (i) subtraction of the background channel 

response caused by static objects, (ii) estimation of the targets’ 

distances and angles with respect to the ISAC device, and 

(iii) using a tracking algorithm (e.g., a Kalman filter) to 

estimate each person’s movement trajectory across time. The 



Table I: Benchmarks for ML models. 
 

 

Dataset Activity F1-score 

Walking 0.996 
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Waving hands 0.021 

Figure 4: 𝜇D spectrogram of a walking subject from irregular CIR measure- 
ments from DISC-C: (a) using STFT and (b) IHT [9]. 
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sequences, as described in Section II-A, after localizing the 
target and extracting the CIR part corresponding to the target’s 

location. For the STFT we use a Hamming window of 𝑊 = 64 

samples and normalize the resulting 𝜇D spectrogram column- 

wise in [0, 1], using min − max normalization. Thanks to the 

𝜇D signatures, in Fig. 3b it is possible to differentiate between 

the different activities performed by each subject. We report 

the activities corresponding to T4-6, throughout 4 s. The 

resulting 𝜇D pattern is typical of each activity. As an example, 

for running (T6) it shows the strong contribution of the torso 

and the fainter one of the moving limbs. 
As part of DISC-C, we also release 𝜇D spectrograms 

x [m] 
0.0 1.7 3.5 

Time [s] obtained from non-uniformly sampled CIR sequences, using 

(a) Trajectories of 5 subjects from (b) 𝜇D spectrograms corresponding to 
DISC-B. Each subject performs an T4, T5, ad T6, corresponding to ac- 
activity among the 5 present in the tivities waving hands, sitting/standing, 
dataset. Grey dots represent mea- and running. Each activity presents a 

the Iterative Hard Thresholding (IHT) algorithm as detailed 

in [9], and the corresponding code implementation. We report 

an example of spectrograms reconstructed with IHT in Fig. 4, 

in comparison with those obtained using standard STFT on surements associated with tracks. unique pattern. 

Figure 3: Example tracks obtained from a CIR sequence in DISC-B (a) and 
the corresponding 𝜇D spectrograms (b). 

 

localization step (ii) is carried out using the magnitude peaks 

of the CIR estimates, which correspond to observations of 

the positions of the subjects in the surroundings. In step 

(iii), in our results we employ an EKF to track the physical 

position of each individual in the Cartesian space from the 

localization measurements. A constant velocity model is used 

to approximate the movement of the subject. The association 

between the observations from subsequent timesteps is done 

using the Nearest-Neighbors Joint Probabilistic Data Associ- 

ation algorithm (NN-JPDA) [15]. 

The results of this process are shown in Fig. 3a, in which 

5 subjects are tracked obtaining 5 tracks (denoted by T𝑥 
where 𝑥 is an identifier of the track) from an example CIR 

trace from DISC-B. Each subject is performing an activity: 

T0 sitting/standing, T4 waving hands, T5 sitting/standing, T6 

running, and T7 walking. In the next section, we show that 

DISC allows extracting 𝜇D sequences from each track to 

recognize the activities performed by the subjects. 

 
B. 𝜇D extraction 

To provide a benchmark algorithm to extract 𝜇D spec- 

trograms of human movement, we apply STFT to the CIR 

irregularly sampled CIR data. 

 
C. Human activity recognition 

Different activities performed by subjects cause different, 

time-varying patterns in the Doppler shift of the received 

signal. These are contained in the phase of the CIR data, 

and are, in turn, reflected in the 𝜇D signatures. Therefore, 

it is possible to train DL models for multi-class classification 

problems that receive as input the 𝜇D signature and output the 

most likely activity performed by the subject. In the following, 

we present: 1) a basic benchmark to demonstrate the feasibility 

of 𝜇D-based activity recognition from the DISC dataset, and 

2) a more advanced task in which the classifier is trained on 

uniformly sampled CIR data and tested on irregular and sparse 

communication traffic. 

1) Basic classification benchmark: To provide a benchmark 
DL classifier, we developed a basic Convolutional Neural 

Network (CNN) model, composed of (i) six convolutional 

layers for feature extraction, with 3 × 3 kernel size, a stride of 

2, and 8, 16, 32, 64, 128, 128 feature maps, and (ii) a classifier 

with two fully connected layers with 64 and 𝐶 neurons, 

respectively, where 𝐶 is the number of activities in the HAR 

task. Dropout with probability 0.2 is applied before each fully 

connected layer during training. 

We trained the model for 10 epochs on the 𝜇D signatures 

from DISC-A and DISC-B (see Section III) independently. In 
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Tab. I, we show the classification F1 score, defined as the 

harmonic mean of precision and recall, on the test set. In 

DISC-A, we include CIR sequences from subjects 1 to 5 in the 

training set, while subjects 6 and 7 are used for the validation 

and test sets, respectively. This is intended to demonstrate the 

possibility of generalizing to unseen subjects, thus testing the 

generalization capabilities of the DL classifier. In DISC-B, the 

validation and test sets are a randomly selected 10% fraction 

of the total dataset each. 

Our results demonstrate the feasibility of performing 

HAR with radar-like accuracy using standard-compliant SC 

IEEE 802.11ay waveforms.From Tab. I, one can see that the 

most challenging activity to recognize in both datasets is wav- 

ing hands. Indeed, this activity only involves the movement of 

arms, which do not cause strong scattering of the radio signal 

and are hence difficult to detect. 

2) Generalization to sparse and irregular CIR data: The 

temporal irregularity and sparsity of CIR measurements ob- 

tained from normal communication traffic degrade the qual- 

ity of the resulting 𝜇D spectrograms. Moreover, collecting 

data containing diverse temporal CIR estimation patterns is 

challenging and time-consuming. However, classifiers trained 

on CIR data collected at regular sampling times may not 

generalize well to irregular patterns, due to the reduced 𝜇D 

quality. To show this phenomenon, we train a CNN classifier 

like the one used in the previous section on DISC-B. Then, we 

test it on data contained in DISC-C, evaluating the generality 

of the learned features. 

The results are shown in Tab. I. The sparsity of the data 

degrades the performance of the model in three of the activities 

(walking, running, and sitting/standing), which are however 

still recognizable with over 0.7 F1-score. For the last activity 

(waving hands), the model does not generalize enough to the 

new data. This activity is more challenging than the other three 

since it involves movements of the hands that cause weak 

signal scattering. This shows the importance of addressing the 

problem of domain shift and generalization in DL-based ISAC. 

 
VI. LIMITATIONS AND FUTURE WORK 

While DISC serves as a valuable benchmark dataset for 

ISAC research, certain limitations present opportunities for 

further extensions and improvement. 

Dataset size. DISC contains a sufficient amount of data to 

train and validate DL models for ISAC. However, compared to 

existing DL datasets in other fields (e.g., computer vision), its 

size is fairly limited in terms of total measurement time, which 

may limit the applicability of extremely large DL architectures. 

Occlusion and interference. Although DISC captures two 

distinct indoor environments, five different activities, and up 

to five subjects moving simultaneously, acquiring data in more 

diverse settings, including the presence of obstacles in future 

work would enhance the value of the dataset. 

Bistatic and multistatic CIR. As research moves towards 

cooperative ISAC networks, it is key to collect datasets 

including bistatic and multistatic CIR data, with multiple 

distributed ISAC TX and RX nodes. This is a critical aspect 

to be investigated by future work and ISAC datasets. 

Irregular temporal patterns generalization. While DISC-C 

includes realistic Wi-Fi traffic patterns, its irregular and sparse 

nature introduces difficulties in 𝜇D extraction and classifi- 

cation, requiring adaptive signal processing techniques and 

domain adaptation strategies for DL architectures. Future 

research should focus on developing and evaluating algorithms 

that generalize across different inter-packet durations while 

maintaining robust sensing performance. 

 
VII. CONCLUSION 

In this paper, we presented DISC, the first ISAC dataset 

containing CIR sequences obtained using 60 GHz, standard- 

compliant, IEEE 802.11ay waveforms that contain backscat- 

tered signals on people moving in the environment. The 

provided CIR measurements include 7 subjects performing 5 

different activities in 2 environments, and they are collected 

according to both uniform and real Wi-Fi traffic patterns, 

thus enabling the validation of a variety of ML and signal 

processing algorithms for ISAC. We presented benchmark 

algorithms for people tracking, 𝜇D extraction, and activity 

recognition under diverse channel estimation patterns, and 

made them available to foster further ISAC research. 
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