E applied sciences

Article

Softwarized Edge Intelligence for Advanced IIoT Ecosystems:
A Data-Driven Architecture Across the Cloud/Edge Continuum

David Carrascal 1t

Marco Savi 2

check for
updates
Academic Editor: David

Sarabia-Jacome

Received: 7 August 2025
Revised: 3 October 2025
Accepted: 4 October 2025
Published: 9 October 2025

Citation: Carrascal, D.; Diaz-Fuentes,
J.; Manso, N.; Lopez-Pajares, D.; Rojas,
E.; Savi, M.; Arco,]. M. Softwarized
Edge Intelligence for Advanced IloT
Ecosystems: A Data-Driven
Architecture Across the Cloud /Edge
Continuum. Appl. Sci. 2025, 15,10829.
https://doi.org/10.3390/
app151910829

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

, Javier Diaz-Fuentes 1/
and Jose M. Arco !

+ 1,1 1

, Nicolas Manso , Diego Lopez-Pajares 1, Elisa Rojas *{,

Universidad de Alcald, Departamento de Automatica, Escuela Politécnica Superior,

28805 Alcald de Henares, Spain; david.carrascal@uah.es (D.C.); j.diazf@edu.uah.es (J.D.-F);

miguel. manso@uah.es (N.M.); diego.lopezp@uah.es (D.L.-P.); josem.arco@uah.es (J.M.A.)

Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336,
20126 Milan, Italy; marco.savi@unimib.it

Correspondence: elisa.rojas@uah.es

These authors contributed equally to this work.

Abstract

The evolution of Industrial Internet of Things (IloT) systems demands flexible and intelli-
gent architectures capable of addressing low-latency requirements, real-time analytics, and
adaptive resource management. In this context, softwarized edge computing emerges as a
key enabler, supporting advanced IoT deployments through programmable infrastructures,
distributed intelligence, and seamless integration with cloud environments. This paper
presents an extended and publicly available proof of concept (PoC) for a softwarized,
data-driven architecture designed to operate across the cloud/edge/IoT continuum. The
proposed architecture incorporates containerized microservices, open standards, and ML-
based inference services to enable runtime decision-making and on-the-fly network recon-
figuration based on real-time telemetry from IloT nodes. Unlike traditional solutions, our
approach leverages a modular control plane capable of triggering dynamic adaptations in
the system through RESTful communication with a cloud-hosted inference engine, thus
enhancing responsiveness and autonomy. We evaluate the system in representative IlloT
scenarios involving multi-agent collaboration, showcasing its ability to process data at the
edge, minimize latency, and support real-time decision-making. This work contributes
to the ongoing efforts toward building advanced IoT ecosystems by bridging conceptual
designs and practical implementations, offering a robust foundation for future research
and deployment in intelligent, software-defined industrial environments.

Keywords: softwarized edge computing; Industrial Internet of Things (IloT); distributed
intelligence; cloud/edge continuum; Al-driven orchestration

1. Introduction

In recent years, the Internet of Things (IoT) ecosystem has evolved to encompass new
contexts such as the Industrial Internet of Things (IloT), which has gained rapid momentum,
driven by the increasing demand for intelligent, efficient, and real-time adaptive industrial
solutions to enhance productivity and safety in modern industrial environments [1,2]. This
transformation brings with it new technical requirements, including ultra-low latency,
distributed data processing, and dynamic resource management across increasingly com-
plex and heterogeneous environments. In this context, edge computing [3] has emerged
as a key technology for bringing intelligence closer to the source of data generation, the

Appl. Sci. 2025, 15, 10829

https:/ /doi.org/10.3390/app151910829

https://doi.org/10.3390/app151910829
https://doi.org/10.3390/app151910829
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6982-9365
https://orcid.org/0009-0007-6271-9343
https://orcid.org/0009-0000-6862-1872
https://orcid.org/0000-0002-8959-4321
https://orcid.org/0000-0002-6385-2628
https://orcid.org/0000-0002-8193-0597
https://orcid.org/0000-0001-7752-3561
https://doi.org/10.3390/app151910829
https://www.mdpi.com/article/10.3390/app151910829?type=check_update&version=1

Appl. Sci. 2025, 15, 10829

2 of 32

point where true value is created. In industrial settings, the data generated by sensors,
devices, and production processes are highly dynamic, voluminous, and time-sensitive.
Processing such data at the edge significantly reduces latency and core network load,
while enabling highly localized, context-aware, and near-instantaneous responses to crit-
ical events or rapidly changing conditions [4]. This paradigm facilitates the adoption of
a so-called data-driven approach, where system behavior, decision-making, and service
orchestration are not statically programmed but instead emerge dynamically based on data
collected, processed, and analyzed in real time. The integration of edge computing with
softwarized architectures—leveraging microservices, lightweight virtualization, and open
standards—allows for the flexible and scalable deployment of advanced functionalities.
This, in turn, enables novel use cases within IIoT environments, such as real-time mon-
itoring, autonomous decision making, and network self-reconfiguration using Artificial
Intelligence (AI) models [5]. Furthermore, this technological evolution aligns with the
long-term vision of sixth generation of cellular networks (6G) networks [6,7], which pro-
mote distributed, cooperative, data-centric architectures, as well as with the emerging
principles of industrial data spaces. In this regard, edge intelligence is expected to play a
fundamental role in future infrastructures by fostering interoperability and coordination
between devices, networks, and services.

Despite recent conceptual and standardization advances, significant challenges re-
main. These include issues related to solution scalability, security mechanisms, and, most
notably, the lack of practical implementations that validate these principles in real-world
industrial settings [8]. As highlighted in recent initiatives within the framework of the 3rd
Generation Partnership Project (3GPP) specifications, particularly since Release 18 [9], there
is a growing effort to standardize these capabilities. Nevertheless, there is still a shortage
of integrated architectures and reproducible, open Proof-of-Concept (PoC) implementa-
tions that bring these ideas to life. In this paper, we propose and evaluate a softwarized,
data-driven architecture designed to operate across the cloud/edge/IloT continuum. The
proposed architecture builds upon a previous virtualized PoC [10], extending it with a
microservice-oriented experimental setup orchestrated via Kubernetes. This system demon-
strates the ability to process data at the edge, minimize latency, and dynamically adapt
the architecture to changing conditions. It also supports seamless cooperation between
heterogeneous IIoT nodes, enabling autonomous decision-making and network reconfig-
uration powered by Machine Learning (ML) inference. By doing so, this work aims to
bridge the gap between theoretical designs and practical deployments, contributing to
the development of next-generation, data-centric IloT ecosystems aligned with emerging
trends in distributed intelligence and future communication systems.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the existing softwarized architectures in the context of IloT. Section 3 presents the
main components of the proposed architecture. Section 4 focuses on data as a starting
point, detailing the implementation of functional blocks and their orchestration through
Kubernetes. Section 5 describes the testbed and presents the results of the experimental
evaluation. Section 6 discusses the significance and limitations of the results obtained.
Finally, Section 7 summarizes the main findings and outlines directions for future work.

2. Related Work

The development and deployment of IIoT systems have led to a rich body of research
focused on enabling architectures and supporting technologies that deliver scalability, secu-
rity, efficiency, and flexibility. In this section, we present a comprehensive and chronological
survey of the most influential contributions in this domain. We emphasize architectural
frameworks and real-world implementations that address the coordination of smart sensor

Appl. Sci. 2025, 15, 10829

30f32

management and monitoring, as well as network adaptability to evolving application
requirements. Our review begins with early, purely theoretical reference models and pro-
gresses through practical case studies, ranging from gateway and fog-based deployments
in industrial settings to digital twin and blockchain-enhanced networks, culminating in
recent advances that integrate Al techniques for predictive maintenance and dynamic
network reconfiguration. By tracing this evolution, we illustrate how IloT architectures
have matured from conceptual blueprints to robust Al-driven platforms that underpin
Industry 4.0 and beyond.

Hu et al. [11] proposed SD-IIoT, a software-defined architecture that unifies field
devices, gateways, network infrastructure, and cloud services to meet lloT requirements
for reliability, security, scalability, timeliness, and Quality of Service (QoS). Using Wire-
lessHART, Constrained Application Protocol (CoAP), WebSocket, and Software-Defined
Networking (SDN), they introduced a CoAP + SDN QoS scheme tailored to safety-critical
timing constraints. Validation through case studies and simulations demonstrates en-
hanced system flexibility, responsiveness, and deterministic behavior under configurable
conditions. Another architectural approach that focuses more on energy efficiency is Wang
et al. [12], where a three-layer IIoT architecture (sense, gateway, and control) is presented
and specifically designed to minimize energy consumption in large sensor deployments.
By tunneling all communications through gateway nodes rather than peer-to-peer sensor
exchanges and implementing a predictive sleep-wake scheduling protocol, the system dy-
namically alternates sensors between active and low-power states. A central control node
assigns sensors to the gateways and orchestrates their duty cycles. Simulations confirm
that this hierarchical, schedule-driven design substantially improves resource utilization
and prolongs network lifetime.

Another notable approach was presented by Straufs et al. [13], who, rather than propos-
ing an entirely new IloT framework, demonstrated the retrofit and deployment of existing
architectures on BMW’s production line. They equipped legacy machinery with low-cost
sensors and integrated them into a Cyber-Physical System (CPS) that leverages ML for
condition monitoring and anomaly detection. Their cost-effective, flexible, and scalable
solution was validated on a heavy-lift electric monorail system of the BMW Group, yielding
clear gains in overall equipment effectiveness. The authors recommend an incremental
ML pipeline, starting with a semi-supervised anomaly detector to harvest irregular pat-
terns, then applying clustering on the accumulated anomaly set (with expert labeling) to
generate datasets for downstream supervised fault-classification models. Dejene et al. [14]
proposed TD2SecloT, a lightweight, temporal, data-driven security architecture for IlloT
that employs Elliptic Curve Cryptography (ECC) to provide mutual authentication and
data confidentiality with minimal computational overhead. Validated via Contiki OS and
simulated in Cooja, TD2SecloT achieves faster key generation, reduced processing load,
and robust defense against replay, man-in-the-middle, chosen-cipher, quantum, and lattice-
based attacks. Compared to previous schemes, it offers an improved balance of security
and efficiency for resource-constrained devices. Building on the move toward adaptive,
user-centric IIoT platforms, Zhang et al. [15] introduced an open ecosystem architecture
designed to maximize the flexibility, scalability, and extensibility of the end user. Designed
for bidirectional interaction, their framework allows users to both adopt and develop web-
or mobile-based applications that interface directly with electrical assets and back-end
services. Validated in a wind farm maintenance scenario, the architecture deploys diverse
turbine sensors whose data streams are routed through advanced analytics pipelines to
drive real-time user-adjustable maintenance strategies. The experimental results confirmed
significant gains in operational efficiency and reliability, highlighting the promise of open
IIoT ecosystems for the management of smart grid and electrical assets.

Appl. Sci. 2025, 15, 10829

4 of 32

Extending the focus from open, user-driven IloT ecosystems to robust security mecha-
nisms, Taheri et al. [16] introduced Fed-IIoT, a two-tier federated learning framework for
Android malware detection in IloT networks. On the participant side, Generative Adver-
sarial Networks (GANs) and federated GANs simulate data-poisoning attacks, while the
server side employs an adversarial aggregation-aware GAN (A3GAN) to filter anomalies
during model updates. This design enables collaborative training without exposing raw
data, preserving device privacy. Evaluation on three IloT-related malware datasets demon-
strates that Fed-IloT not only maintains high detection accuracy but also increases resilience
to poisoning by up to 8% compared to existing defenses. Zhang et al. [17] presented an IloT
gateway architecture that transparently bridges heterogeneous networks and cloud plat-
forms. Their design employs a multi-protocol parser to translate industrial protocols (e.g.,
OPC UA, Modbus, and Siemens S7) into Message Queuing Telemetry Transport (MQTT)
for unified cloud integration. An asynchronous processing engine with breakpoint continu-
ation ensures real-time reliability under concurrent loads, while a three-layer encryption
scheme secures data in transit. Hardware and software experiments in process control
equipment confirm seamless protocol decoupling, secure data fusion, and robust interop-
erability between legacy devices and modern IIoT services. Building on the integration
of IloT frameworks with cutting-edge mobile networks, Chandra et al. [18] developed
a fifth generation of cellular networks (5G) enabled IloT architecture tailored for smart
manufacturing under Industry 4.0. They identified the shortcomings of legacy 3G/4G
(insufficient bandwidth, limited device density, higher latency, and variable reliability) and
leveraged 5G’s core capabilities (enhanced Mobile Broadband (eMBB), massive Machine-
Type Communications (mMTC), Ultra-Reliable Low Latency Communication (URLLC),
and NarrowBand Internet of Things (NB-IoT)) to deliver real-time monitoring, intelligent
automation, and collaborative machine operations. This design ensures robust, low-latency
communication among cyber-physical manufacturing systems, thus improving responsive-
ness and smartness in production processes.

An alternative proposal, and the closest to our work, is SEGA by Ghosh et al. [19],
which introduces a secured edge-gateway microservices architecture for IloT machine mon-
itoring. The architecture guarantees secure data acquisition, transmission, and temporary
storage at the edge through a combination of active and passive encryption. A k-nearest
neighbors analytics module processes real-time metrics (current consumption, power factor,
energy usage, and vibration) to autonomously evaluate machine health. Although compu-
tationally heavier tasks can be offloaded to the cloud, edge-based inference preserves low
latency. Experiments demonstrate that encryption introduces only 84 ms of additional delay
at sensor nodes, with minimal impact on gateway throughput, underscoring SEGA’s feasi-
bility in industrial deployments. However, SEGA’s Docker-based microservice deployment
presents scalability limitations, particularly in data ingestion and storage, since it lacks
dynamic orchestration. In contrast, our Kubernetes-driven platform not only maintains
SEGA’s low-latency edge processing but also seamlessly scales services and data pipelines
on demand. Furthermore, by feeding inference outcomes back into a network reconfigura-
tion engine, our solution adapts in real time to evolving operational conditions, providing
both the security and flexibility required for next-generation IloT systems. Complementing
our enhancements in orchestration and edge processing, Lin et al. [20] shift the paradigm
toward fully decentralized IlIoT systems by integrating blockchain, oracle services, and
federated learning. They embed an oracle layer to securely ingest external data in real
time into a blockchain-secured platform, preserving integrity while enabling dynamic
data feeds. A peer-to-peer collaboration mechanism governs trusted data and resource
exchange, and a distributed computing module amplifies collective model training. The
benchmarks reveal that this architecture consistently reduces processing delays, enhances

Appl. Sci. 2025, 15, 10829

5o0f 32

system stability, and increases learning accuracy. Extending decentralized IloT paradigms
into domain-specific applications, Sarkar et al. [21] presented i-Health, an SDN-enabled
fog architecture for healthcare. Here, a smart controller uses historical and real-time data to
decide which patient measurements should be relayed to the fog layer. To further optimize
performance, the fog ranking and fog probing services dynamically select and evaluate the
best fog nodes, reducing transmission delays and extending the network lifetime. i-Health
also implements mechanisms for failure recovery and achieves superior efficiency and
resilience compared to traditional fog deployments.

Advancing the design of software-defined architectures for IloT ecosystems, Isah
et al. [22] introduced a data-driven Digital Twin Network (DTN) framework to address the
growing operational complexity brought by 5G, cloud, and IoT technologies. A three-layer
architecture comprising a Physical Network Layer (PNL), a Digital Twin Layer (DTL), and
an Application Layer (AL) is introduced to facilitate bi-directional synchronization between
real and virtual assets. A southbound interface embeds SDN mechanisms for secure PNL-
DTL communication, while a northbound interface closes the control loop between the
DTL and AL. The authors also specify DTN data types and protocols to ensure seamless
data integration. Together, these elements produce a resilient, adaptive and intelligent IIoT
network powered by digital twin interoperability.

A different work that departs slightly from the preceding network-centric architec-
tures is Gupta et al. [23], who developed an IloT-driven information system grounded in
Organizing Vision Theory (OVT) and Organizational Information Processing Theory (OIPT).
Their model emphasizes transparency, coherence, and continuity along with customized
information processing capabilities. By integrating real-time IloT data collection, AI/ML
analytics, and self-organizing control loops, the system supports context-aware decision
making and maintenance scheduling. A case study illustrates how their architecture not
only rationalizes data flows but also drives organizational transformation by embedding
intelligent decision support across departments. Associated with the organizational and
decision-support focus of Gupta et al. [23], Peruthambi et al. [24] advanced the IIoT main-
tenance landscape with a big-data-driven predictive framework. They fuse ML (Random
Forest, Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and
XGBoost), digital twins, and optimization (Koopman observables and Dynamic Mode
Decomposition with control (DMDc)) to maximize fault prediction accuracy (peaking at
96.4% for XGBoost) and reduce computational overhead by 35%. A blockchain-enabled
federated learning layer further secures the training of decentralized models, reducing false
alarms by 28%.

Finally, Banitalebi [25] introduced EDBLSD-IIoT, a hybrid edge-blockchain-SDN-
cloud architecture that holistically addresses IloT challenges related to security, latency,
energy use, scalability, and QoS variability. Edge computing minimizes delay through
local processing, while SDN orchestrates traffic and, using the Whale Optimization Algo-
rithm (WOA), elects energy-optimal cluster heads. The blockchain secures transmissions
with a tamper-proof ledger. Simulations in Mininet show that EDBLSD-IIoT maintains
considerable throughput in dense deployments and under heavy load.

To provide a clear overview of the surveyed works, Table 1 presents a concise compar-
ative analysis across the following dimensions:

¢ Article: Authors and reference.

* Year: Year of publication.

¢ Description: Brief description of the paper.

¢ Evaluation and Tools: Nature of the validation, ranging from theoretical and an-
alytical studies to simulations, proofs of concept, and full-scale implementations

Appl. Sci. 2025, 15, 10829

6 of 32

(reflecting increasing Technology Readiness Level (TRL)), alongside any specific tools
or platforms employed.

Relevance to our study: Assessment of each work’s impact relative to our study.
Proposals demonstrating practical implementations and higher TRL generally receive
elevated contribution scores.

The reviewed literature reveals significant progress in IloT architectures and in en-

abling technologies for softwarised networks, encompassing edge/fog and cloud. However,

several open challenges persist. First, many proposals remain confined to theoretical models

or closed-source, with few providing open, reproducible implementations on real industrial

hardware or simulated. Second, there is a lack of unified edge-cloud orchestration frame-

works that leverage live inference outputs to trigger dynamic network reconfiguration,

service placement, and preventive maintenance. Third, existing microservice-based archi-

tectures often struggle to maintain performance under high-density sensor deployments or

bursty workloads, as they lack elastic, cloud-native autoscaling mechanisms. Addressing

these gaps is essential to advance truly adaptive, scalable, and transparent IloT systems.

Table 1. Comparative summary of related works on IIoT architectures.

Relevance to

Article Year Description Evaluation and Tools Our Study
Huetal. [11] 2015 QoS-aware SDN-enabled IloT gateway Emulation (Mininet)) & @
Wang et al. [12] 2016 Cnergy-aware multi-layersensing lloT g 1o) QAGA
architecture
Preventive maintenance architecture at
Straus et al. [13] 2018 BMW facilities Real testbed L & X
Dejene et al. [14] 2020 Security-aware architecture for IloT Simulation (Cooja) 1.8 $%¢
systems
Zhang et al. [15] 2020 B1d1rec’E1onal open IloT ecosystem, Theoretical study)& (G
user-driven development
Taheri et al. [16] 2000 ~ Malware detection and Simulation * A vy
privacy-preserving for IloT systems
Security-aware and multi-protocol Real Testbed
Zhang etal. [17] 2020 parsing IloT gateway (Raspberry Pi) kel
Chandra et al. [18] 2021 Low lantency 5G-enabled IloT Theoretical study i ve
framework
Security-aware microservice-oriented =~ Real Testbed
Ghosh etal. [19] 2021 edge gateway (Raspberry Pi, ESP32) ool
Lin et al. [20] 2022 Decentralized IIoT architecture Simulation) GRAKS
Fog ranking/probing service, Emulation (Mininet,
Sarlar et al. [21] 2022 healthcare-oriented IIoT POX) K tesy
Isah et al. [22] 2023 Digital twin network for IloT Theoretical study v ve
Gupta et al. [23] 2025 ilyos"l;;i;lven organizational information py, . oticq) study) QAGK
Peruthambi et al. [24] 2025 Blg._ data-driven predictive Simulation)& (G
maintenance
Banitalebi [25] 2025 Security/latency/energy-aware lloT Emulation (Mininet, AR Ty

architecture

Ryu)

Therefore, after analyzing the state of the literature and identify the existing gaps, we

summarize the main contributions of our work as follows:

Appl. Sci. 2025, 15, 10829

7 of 32

1. End-to-End Continuum Architecture: We design and implement a unified framework
that operates seamlessly across the cloud-edge-IloT continuum, enabling data process-
ing at the source, reducing end-to-end latency, and supporting hierarchical analytics.

2. Microservice-Oriented Deployment: Building on our prior virtualized proof-of-
concept [10], we develop a production-grade, Kubernetes-managed experimental
setup that orchestrates containerized microservices for data ingestion, preprocessing,
inference, and feedback.

3. Dynamic Adaptivity and Reconfiguration: We introduce a runtime control plane
that ingests live ML inference outputs and telemetry to trigger on-the-fly network
reconfiguration based on the operational state of IloT nodes.

4. Practical Validation and Open-Source Implementation: We validate the proposed
system on real hardware and realistic network emulations, demonstrating significant
latency reductions and scalable performance under high-density sensor workloads.
All code, deployment scripts, and datasets are released as open-source [26] to foster
reproducibility and accelerate future development of the IIoT architectures.

3. System Architecture

Our architecture builds upon the general design framework established by the 6G-
DATADRIVEN-02 project [27], initially validated through a proof-of-concept [10]. It is
engineered to operate seamlessly and natively across the entire cloud-edge-IloT continuum.
The primary objective is to leverage the data generated by heterogeneous industrial devices
(sensors, actuators, and gateways (GWs)) to enable localized processing with minimal
response times and network adaptability and reconfiguration, as well as collaborative
coordination across multiple facilities and a unified global perspective in the cloud. Figure 1
depicts the overall system architecture.

The figure illustrates a multi-tier architecture enabling IloT deployments across a
cloud—-edge—factory continuum. At the bottom tier, the architecture starts at the factory
floor, where IloT devices (e.g., robotic arms, transport systems, and control terminals) are
connected via IlIoT GWs. These GWs collect data streams from sensors and actuators within
factories and relay them upstream. Network access technologies such as 5G, 6G, or WIMAX
interconnect these gateways with an edge platform, where a control module oversees traffic
routing and orchestration. Data streams are selectively stored in distributed edge-level
databases (DBs). This edge control plane dynamically governs multiple factory floors,
optimizing network utilization and IloT application performance. Moving upward, the
cloud platform hosts Function-as-a-Service (FaaS) modules incorporating AI/ML pipelines.
These modules consume data from edge DBs to run predictive analytics, such as fault
detection or adaptive control, reducing latency and computational overhead at the factory
level. Monitoring modules provide observability and enable users to receive real-time
feedback across tiers.

The architecture supports federated learning, in which insights from one factory floor
can inform global models, ensuring shared intelligence across facilities. The cloud tier
consolidates the outputs of all factories, providing a unified operational view and enabling
the edge control module to enforce global policies on service placement, routing, and
resource allocation. In addition, the design allows the incorporation of foundational services
that ensure scalability and resilience. A distributed messaging backbone decouples IloT
data producers and consumers, while local digital twins on each factory floor participate
in federated learning loops. Finally, end-to-end observability (through logging, metrics,
and tracing) provides visibility throughout the entire continuum, supporting proactive
monitoring and long-term strategic planning.

Appl. Sci. 2025, 15, 10829

8 of 32

[@:4' """""""
£
P S
! S Edge
i platform
'O
"D
L} |
1 O ,
- E ! a
|_G_—2 : Pia -~
1 \j , \
D O\ Network access
'. | L 329 A (O, 04, WIIVIAA, €1C.)
o ___ _, Distributed meesages
o Gws GWs backbone

ndustrial loT
ndustrial 4.0

2

.

\ 1
| |
1 1
| |
1 1
| |
1 1
| |
1 1
] 1]

RN

Figure 1. System architecture overview.

Overall, this continuous, softwarized, data-driven architecture enables:

¢ Automated reconfiguration of IIoT networks based on the operational state of
each factory.

¢ Distributed, low-latency processing at the edge, ensuring immediate reactive actions.

e Federated collaboration between factories for joint learning and knowledge transfer.

e Unified operational view, global control, and continuous optimization from the cloud
and edge.

4. Implementation and Deployment of the Architecture

This section details the implementation and deployment of the architecture intro-
duced in Section 3. As previously outlined, the architecture is fundamentally data-driven.
Accordingly, Section 4.1 begins with an analysis of the dataset used to simulate the IloT
sensor readings at the factory floor, along with the machine learning models used for
classification tasks. This subsection is introduced first, as some key data-driven aspects,
such as the notion of sensor efficiency status and its role in triggering reconfiguration
events, are essential to understand the logic and behavior of the components described
subsequently. Section 4.2 describes the implementation of the architecture’s core compo-
nents. Finally, Section 4.3 introduces the Kubernetes-based deployment, which adopts a
microservice-oriented approach, ensuring scalability, resilience, and flexibility across the
factory floor-edge—cloud continuum.

Appl. Sci. 2025, 15, 10829

9 of 32

4.1. Dataset Analysis and Model Training

The architecture operation is driven by data generated from the IIoT sensors. Given
the lack of access to a physical industrial environment, we rely on a publicly available IIoT
dataset containing time-series sensor and actuator readings. The chosen dataset, hosted on
Kaggle [28], is subjected to statistical analysis to extract the relevant features, which are
then used to simulate sensor behavior within our deployment. Based on these features,
a classification model is trained to detect anomalous states in nodes, triggering network
reconfiguration mechanisms when necessary.

4.1.1. IIoT Dataset Analysis

The selected dataset includes comprehensive time-series measurements of industrial
processes. It captures physical sensor data (temperature, vibration, and power consump-
tion), network performance indicators (latency, packet loss, and communication efficiency),
and production metrics (defect rates and operational errors). It enables the assessment of
machine efficiency by considering sensor readings, network conditions, and production
performance indicators. Table 2 summarizes the key characteristics of the dataset.

Table 2. Main features of the dataset.

Feature Name

Data Type Description

Timestamp Datetime Timestamp of each reading.
Machine_ID Integer Unique identifier for each IloT machine.
Operation_Mode String Operation mode for each IloT machine.
Temperature_C Float Temperature value (°C).

Vibration_Hz Float Vibration value (Hz).
Power_Consumption_kW Float Power consumption value (kW).
Network_Latency_ms Float Network latency value (ms).
Packet_Loss_% Float Packet loss value (%).
Quality_Ctrl_Defect_Rate Float Defect rate value (%).
Prod_Speed_units_per_hr Float Production speed value (u/h).
Predict_Maintenance_Score Float Maintenance prediction value (%).
Error_Rate_%, Float Error rate value (%).
Efficiency_Status String Manufacturing efficiency classification based on performance metrics.

The dataset is subjected to statistical analysis to extract the relevant features, which
are then used to emulate the sensor behavior of our deployment. A structural analysis
of the dataset, based on the correlation matrix (see Figure 2), reveals that the numerical
features listed in Table 2 exhibit very low linear correlation with each other. This lack
of redundancy is advantageous, as it suggests that each feature provides distinct, non-
overlapping information to the system.

Further statistical analysis of the feature distributions shows that all numerical vari-
ables follow an approximately uniform distribution (see Figure 3). This is particularly
relevant for our architecture, as it supports the extraction of descriptive statistics to simu-
late realistic sensor data in the absence of physical hardware. In contrast, the categorical
variables, Operation_Mode and Efficiency_Status, display delta distributions, with cer-
tain categories being notably overrepresented (as illustrated in Figure 3). Furthermore, the
dataset exhibits temporal irregularities, as the Month attribute shows a strong concentration
of records in January and February.

Appl. Sci. 2025, 15, 10829

10 of 32

Correlation Heatmap of Numeric Features

Machine_ID

Temperature_C

Vibration_Hz
Power_Consumption_kW
Network_Latency_ms
Packet_Loss_%
Quality_Control_Defect_Rate_%
Production_Speed_units_per_hr
Predictive_Maintenance_Score

Error_Rate_%

Figure 2. Correlation heatmap of the dataset’s numeric features.

Histogram of Operation_Mode Histogram of Temperature_C

-0.6

-0.4

Histogram of Vibration_Hz

Mean: 0.40 |
Median: 0.00

Std Dev: 0.66 0.020

Frequency
iH
S

N B O

a

Mean: 2.55
Median: 2.
Std Dev: 1.41

12 =T 0.20
0.015

0.15
0.010

0.10

/H\ 0.005 0.05

0.000 0.00

0.0 05 10 15 2.0 ’ 30 40 50 60 70 80 90 0 1
Histogram of Power_Consumption_kW

o

Histogram of Network Latency ms

2

3 2 5

Histogram of Packet_Loss_%

0.16

Mean: 5.75 Mean: 25.. 56
0.14 Median: 5.76 0.025 Median: 25.54 0.25
: Std Dev: 2.45 Std Dev: 14. 12

Meal

fyre)

4 6 8 10 ’ 40

012 T 0.020 P TRAT | 020 M — n
§0.10
3 0.015 015
2008
g
*0.06 0.010 0.10
0.04
0.005 0.05
0.02
0.00 0.000 0.00 |
2 2

Histogram of Quality_Control Defect Rate % Hlstogram of Productlonispeediunltsiperihr Histogram of Predictive_Mai Score
014 [Mean:5.01 | | 00030 [Me .92 | 50 |
Median: 5.00 Medi y 12 ian: 0.50
0.12 Std Dev: 2.88 | | 0.0025 Std Dev: 130. 0.29
0.10 o S e i 1.0 AT =
> 0.0020
§008 08
3 0.0015
o 0.6
£ 0.06
0.0010
0.04 0.4
0.02 0.0005 02
000 4 10 000007 100 200 300 400 500 0050 02 o4 o6 08 10
Histogram of Error_Rate_% Histogram of Efficiency_Status Histogram of Month
Mean: 7.50 | | 17.5 Mean: 1.16 10 Mean: 1.69
0.08 Median: 7.50 Median: 1.00 Median: 2.00
Std Dev: 4.34 15.0 Std Dev: 0.44 Std Dev: 0. 70
I r— 8
i 12.5
5.0.06
g
g 10.0 6
z
go.04 75 .
5.0
0.02 2
- /H\
0.00 0.0—F- 0 + +
00 2.5 50 75 100 125 15.0 0.0 15 2.0 1.0 15 2.0 .0

Figure 3. Histogram distributions and key summary statistics for each dataset feature.

Appl. Sci. 2025, 15, 10829

11 of 32

To simulate the data realistically, we analyzed the time intervals between consecutive
sensor readings. The histogram of these intervals, shown in Figure 4, reveals a right-skewed
distribution, with most intervals clustered at low values. However, the dataset also contains
sporadic gaps of up to 8.5 h (approximately 514 min or 30,840 s). The mean time interval is
approximately 2998.40 s (roughly 50 min), while the median is 2100.00 s. The difference
between the mean and the median confirms the prevalence of shorter intervals due to the
skewness of the distribution. The high standard deviation further indicates considerable
variability in sensor reporting times. For implementation purposes, this average interval
has been normalized to a configurable simulation interval of 1 s, preserving relative timing
patterns while enabling real-time testing of the architecture.

Interval time between registers

20,000 A B Time_Difference

—— Mean = 2998.4
17,500 ean s

15,000 A
12,500 A

10,000 A

Frequency

7500 A

5000 A

.

2500 A

0 5000 10,000 15,000 20,000 25,000 30,000
Interval time (seconds)

Figure 4. Interval time in seconds between record’s timestamps.

4.1.2. Training of IIoT Sensor Efficiency Status Classification Model

As described in Section 3, the cloud layer includes an FaaS module responsible for
executing inference functions that determine whether a sensor is operating anomalously. To
support this functionality, we trained an ML model using the Efficiency_Status attribute
available in the dataset, which labels sensor behavior across three classes: low, medium
and high efficiency. A Support Vector Machine (SVM) classifier was selected due to its
high performance on the task. The trained model achieved precision and recall scores of
97.5%, demonstrating high precision in differentiating between efficiency levels. Although
additional models could have been explored, the focus of this work is not on optimizing
ML performance, but rather on designing an architecture capable of integrating diverse
AI/ML models as needed for different use cases. Figure 5a shows the normalized confusion
matrix that confirms the ability of the classifier to accurately distinguish between the three
efficiency classes with minimal misclassification. Furthermore, Figure 5b visualizes the
decision boundaries derived from the normalized SVM model, trained specifically on the
features Production_Speed_units_per_hr and Error_Rate_%. This plot clearly illustrates
the separation of the efficiency classes in the feature space, with the high-efficiency region
concentrated in the lower-right quadrant (characterized by high production speed and low
error rate), while low-efficiency instances cluster in the upper-left (low speed and high
error). The medium class occupies the intermediate zones, reflecting transitional behav-
ior. This visual inspection validates the effectiveness of the SVM classifier in delineating
operational states relevant for triggering architectural reconfigurations.

Appl. Sci. 2025, 15, 10829

12 of 32

Decision boundary of the SVM model with scaled data

Efficiency Status
« High
Low

Normalized confusion matrix 2 « Medium

High

Error_Rate_%
)

True label

Medium 4 0.017 0.049

0.0

High Low Medium _ 0 1
Predicted label Production_Speed_units_per_hr

(a) Normalized confusion matrix. (b) Decision boundary of the SVM model.
Figure 5. Visualization of model performance: confusion matrix and decision boundary.

4.2. Implementation of Core Functional Blocks

This section describes the implementation of all the functional blocks in the architec-
ture. The explanation begins at the lowest tier with the factory floor components, followed
by the functional modules deployed at the edge layer, namely the control module and the
database, and concludes with the components hosted on the cloud platform, including the
monitoring system and the FaaS module responsible for executing the inference service.

4.2.1. Factory Floor

The factory floor represents the foundational layer of the architecture, encompassing
the IIoT devices and the wireless infrastructure that generate and transmit data. Its imple-
mentation is intended to be adaptable to the specific requirements of the final industrial use
case. However, due to the lack of access to a real factory environment, the entire system is
emulated using Mininet-WiFi [29]. Mininet-WiFi enables the emulation of wireless software-
defined networks, supporting the configuration of resource-constrained nodes and variable
link capacities to create a highly realistic IloT testbed. In this setup, we instantiate a baseline
wireless topology composed of three programmable OpenFlow-enabled Access Point (AP),
each connected to a configurable number of wireless stations. The access points are connected
to the control module, which dynamically manages traffic by issuing flow rules to guide
packet forwarding behavior, while the wireless stations act as individual IloT sensors.

Each IIoT sensor runs an isolated Python-based application within its own network
namespace. This application performs two main functions: authenticating with the edge
database service and simulating and transmitting synthetic sensor data based on the
statistical analysis previously discussed in Section 4.1. Figure 6 presents the flow diagram
of the emulated IIoT sensors behavior. The process begins with the initialization of the
simulators for each feature, based on the previously extracted statistical parameters. After
initialization, the system checks connectivity with the database service hosted on the
edge. Upon successful connection, the sensor retrieves organization and factory identifiers
(mapped to specific data buckets) via an OAuth2-based authentication exchange with the
edge database agent. Once authorization is granted, the sensor receives a fine-grained
write token that enables data insertion exclusively into authorized buckets. Then, the
sensor enters a loop where it continuously simulates and transmits data values at fixed
time intervals (1 s, configurable) until interrupted.

Appl. Sci. 2025, 15, 10829 13 of 32

[Instantiate lloT_Sensor

Is DB reachable?

Retrieve ORG ID Token

I

Retrieve Bucket ID Token

|

Request OAuth Token

|

Simulate data and Transmit [¢——

Wait Interval (1s)

Interrupted?

-

Ve

Figure 6. Flowchart representing the lifecycle of the IToT_Sensor instance, including initialization,
authentication procedures, and periodic data transmission to Database module.

4.2.2. Control Module

The control module is responsible for managing the control plane of the IIoT factory
AP networks, as well as for retrieving data from the IloT sensors through the edge layer
database module. It also establishes inference pipelines with the FaaS module deployed
in the cloud to determine whether any sensor exhibits anomalous behavior. When such
anomalies are identified, the control module triggers reconfiguration actions at the corre-
sponding AP to optimize network performance. The implementation leverages Ryu [30] as
the core controller for two main reasons: (1) it provides a southbound Application Program-
ming Interface (API) supporting the OpenFlow protocol, allowing dynamic control-plane
configuration of the APs; (2) its application-oriented design facilitates the creation of new
control profiles that encapsulate the decision logic, including interactions with the database
module, remote inference requests to the cloud, and dynamic IIoT network reconfiguration.
The logic implemented in Ryu is detailed in Algorithm 1.

Appl. Sci. 2025, 15, 10829

14 of 32

The control logic is driven by a tightly integrated decision loop combining real-time
monitoring, ML-based inference, and policy enforcement. When an AP forwards a packet to
the controller (via a PacketIn event), the controller queries the database for recent readings
associated with the corresponding sensor. In the current implementation, the retrieved
data consists of aggregated averages over a 10-min window, though this is configurable.
This data is submitted to the FaaS API as a JSON payload, triggering a remote inference
using the classification model described above. The Faa$S service returns a label indicating
whether the sensor should be considered efficient, inefficient, or in transition. The result is
recorded in an internal sensor dictionary to track the operational state of each sensor and
support centralized decision-making. If the sensor is classified as inefficient, the controller
initiates a reconfiguration action. In the current prototype, this involves dissociating the
sensor from its current AP, allowing it to reconnect to another access point with potentially
better performance. This behavior demonstrates the feasibility of dynamic, ML-driven
network reconfiguration, which can be extended or customized for various IloT use cases.

Algorithm 1: Flow Control and Anomaly Detection in the Ryu Controller.

Input: OpenFlow events, IIoT packets
Output: Dynamic flow control decisions and anomaly detection

Initialization:

=

2 Initialize Database (DB) and Inference services;
3 Initialize MAC table and sensor list;

'S

Upon AP connection:

1%}

Install table-miss rule to forward packets to the controller;

Upon Packet-In event:

N o

Extract datapath, input port, and packet information;
Learn source and destination MAC addresses;

@

9 Update MAC-to-port mapping;
10 Register new sensors if applicable;
1 if packet is ARP then
12 L Forward packet using FLOOD;

13 else
14 L Determine output port from MAC table;

15 if packet is IPv4 and involves a registered sensor then

16 Query metrics from DB module;

17 Invoke inference through the FaaS API;

18 if anomaly detected then

19 Mark sensor as dropped;

20 L Drop packet;

21 else if sensor was previously dropped and status is normal then
22 L Unmark sensor;

23 if destination is known then
24 Install flow rule;

25 Forward packet to output port;

Appl. Sci. 2025, 15, 10829

15 of 32

4.2.3. Database Module

InfluxDB [31] has been selected for the implementation of the database module, as
it is a time-series database specifically optimized for data ingestion and querying in real
time. This choice is motivated by several critical factors for IloT monitoring systems: its
high efficiency in handling write-intensive operations, its native support for time-window
aggregations, and its seamless integration with platforms such as Grafana. In particular,
InfluxDB enables the storage of periodic sensor readings with precise timestamps and
supports aggregated queries with minimal latency. Figure 7 presents the InfluxDB front-
end user interface, showing an example of the time-series data stored in the database (with
different colored lines). These data contain the temporal evolution of different variables
recorded by the IIoT sensors.

Data Explorer

s Graph - ® cusToMmIZE ¥ Local ~ | [4 SAVE AS

2025.07-23 13:45:00 2025-07-23 14:00:00 2025-07-23 14:15:00

SCRIPT EDITOR SUBMIT

- WINDOW PERIOD

cusTom AUTO

iiot_data

_monitoring

- v tempSensors error_rate v 50410f7e-76fb-4525-8.. v sensor-sta_1_1

network_latency v 737e6f83-9c66-475b-9. sensor-sta_2_1
+ Create Bucket

operation_mode v eaB1c319-b778-414c-a.. v sensor-sta_3_1
v packet_loss

power_consumption
mean

predictive_maintenanc..
median

production_speed_units

_— gualitvecontral defee

last

Figure 7. InfluxDB frontend configured with the entire IIoT sensor time series of an organization.

4.2.4. FaaS Module

At the cloud tier, the FaaS module hosts the inference service that enables the control
module to trigger reconfigurations of the IloT network. Although the design follows a
FaaS-like philosophy, namely, deploying stateless and on-demand inference services, no
dedicated serverless platform, such as AWS Lambda or OpenFaaS, is used. Instead, the
service is deployed as a containerized microservice managed by Kubernetes. We employ
BentoML [32] to package the ML model developed in Section 4.1.2 and expose it via a REST-
ful API. BentoML was selected for its robust features in model serialization, versioning,
and deployment, as well as its built-in support for scalable serving environments. This
approach ensures seamless model updates and high availability of inference endpoints
under varying load conditions while maintaining low latency.

4.2.5. Monitoring Module

The final functional block of the architecture is the monitoring module. Grafana [33]
has been selected for this purpose due to its seamless integration with InfluxDB and
its rich visualization capabilities. Using Grafana’s dashboard features and the plugin
ecosystem, operators can construct interactive panels in real time that display key IloT
metrics, such as sensor readings, network latency, and system health, directly sourced from
InfluxDB. Figure 8 illustrates the configured frontend interface, which provides factory
operators with a comprehensive, at-a-glance view of the entire IIoT network topology and
real-time performance.

Appl. Sci. 2025, 15, 10829

16 of 32

= Home > Dashboards > S 5 ctu Yatadriven v | (Bl ©
@ Last15minutes v Q@ & Refresh ~

Temperature Vibration

140 °C

120°C T S

100 °¢ IS

80°c

60 — = g = = .JJ‘ mHz

sensor-sta_3_1 sensor-sta_1_1 sensor-sta_2_1 Acti\/e

Error rate (%) Predictive Mainte.

sensor-sta_3_1 sensor-sta_1_1 sensor-sta_2_1

Production Speed Units

.31
sensor-sta_1_1 sensor-sta_1_1

sensor-sta_2_1 sensor-sta_2_1

Figure 8. Grafana frontend Dashboard configured with the entire IIoT sensor information.

4.3. Architecture Deployment on Kubernetes

This section describes the complete deployment architecture used to integrate all
components of the proposed IloT system using a microservice-oriented approach based
on Kubernetes.

Containerization is the preferred deployment strategy for complex systems composed
of multiple, lightweight, and independently managed services that must interact to provide
cohesive functionality. By isolating each logical block as a standalone container, the system
becomes more modular, portable, and easier to scale or update independently. Kubernetes
extends this model with built-in features such as autoscaling, load balancing, fault tolerance,
persistent storage through Persistent Volume Claims (PVCs), and seamless inter-service
communication. While simpler tools like Docker Compose can orchestrate basic setups,
production-grade deployments often require more advanced platforms such as Kubernetes,
OpenShift, Nomad, or Rancher. These orchestrators offer critical enterprise-level features
such as health checks, high availability, service discovery, and declarative deployment.
The motivation for adopting this model with Kubernetes lies in its ability to provide
modularization, scalability, fault tolerance, and fine-grained service management, which
are difficult to achieve in bare-metal deployments or with simpler orchestration tools.

To support the deployment, we set up a three-node Kubernetes cluster (containerd as
a container runtime) using the official kubeadm tool, which provides a streamlined method
for initializing and managing Kubernetes deployments. As shown on the left side of
Figure 9, the cluster consists of (1) one master node that runs the Kubernetes control plane.
It is responsible for managing the state of the cluster, including scheduling workloads,
distributing configuration, and exposing APIs for managing services. This node does not
run application services, but orchestrates deployments across the cluster. It also consists
of (2) two worker nodes, which host the actual application components. These nodes run
the containerized services. Kubernetes organizes containers into logical units named pods,
which represent the smallest deployable unit. Each pod typically runs one or more tightly
coupled containers that share networking and storage resources. In our deployment, each
core component (e.g., database, controller, and FaaS) runs inside its own pod, managed by
the Kubernetes scheduler. To ensure connectivity between pods across different nodes, we
employ Calico as the Container Network Interface (CNI) plugin. Calico provides a secure
overlay network and policy enforcement for communication between pods, both within
the same node and between nodes.

Appl. Sci. 2025, 15, 10829

17 of 32

Deployment scheme

ns: Datadriven \

Physical scheme

@
v
Calico-SW

I 2 | i,
—l Ky - S S .
ns: Factory-Floor ! p ! \. Y
1 1 -
=75 =0 =o) |'| E--------------- o @InﬂuxDBpod-B ' @ Rupod-B | | | g
= o = o = o, AT T T T AT | 0 !]
Mininet-WiFi : 5 e
,,,,,,,,,,,,,,,,,,,,,,,,,,,, Lo | mfuOBpod-P [\ Ryupod-P '

h
'
'
1 lloTsensor
'
'
'
'

Exposure point: IP: master-ip

' ' ¥
. ' A o '

! '

@ Grafanapod | @ Bento pod !
{ '

8 5
-

1P :
; @,\ T ;)
EREEEEEEL V. | EEEEE ' 2 Q : |] - .
______ QEMU-Libvirt . '\ Grafanapod ! '\\ Bento pod)
\ 8 =@y

|
|
|
|
|
|
|
|
|
Worker -1 Master Worker - 2 |
|
|
|
|
|
|
|
|
|

\\ IIoT Sensors

Figure 9. Physical and logical overview of cluster deployment.

The logical deployment scheme is visualized on the right side of Figure 9. It illustrates
how the physical infrastructure (cluster nodes) maps to virtual environments (names-
paces), services, and pods. The architecture is logically divided into two namespaces (ns),
Factory-floor and Data-driven. Factory-floor emulates the IloT environment using
a virtual machine deployed via KubeVirt and QEMU-Libvirt. This virtual machine runs
Mininet-WiFi, within which wireless network topologies are instantiated and IIoT sensors
are simulated. These sensors behave as described in Section 4.2.1. Data-driven hosts all
edge and control services required for decision-making and monitoring. These include the
edge services, Ryu controller, and InfluxDB, deployed in an active-standby configuration
to provide resilience, and the BentoML inference service and Grafana dashboards, both
configured with Horizontal Pod Autoscaler (HPA), allowing them to scale based on CPU
and memory usage to maintain performance under varying loads. A summary of the
hardware resources allocated to run the infrastructure is provided in Table 3.

Table 3. Resource specifications.

Component Specifications
Kubernetes cluster nodes 16 GB RAM; 8 vCPUs; Blade format
Mininet-WiFi virtual machine 4 GBRAM; 4 vCPUs

4.3.1. Scalability and Fault Tolerance Mechanisms

To support adaptive scaling under varying workloads, we configure HPAs for the
Grafana and BentoML services. Each HPA maintains a minimum of one and a maximum
of five pod replicas. Scaling is triggered automatically when CPU utilization exceeds
70%, ensuring that services remain responsive during load peaks. CPU resource limits are
defined with a minimum of 100 millicores and a maximum of 500 millicores per pod.

For stateful components, such as InfluxDB and Ryu, HPA is not used. Instead, these
services are deployed with active—standby redundancy to support fault tolerance and
ensure service continuity. Two pods are provisioned for each component: one acts as
the primary node, handling both read and write operations, while the second remains
in standby mode. Write requests are replicated across both instances to maintain consis-
tency. In the event of primary failure, the standby instance is automatically promoted to
active, assuming full operational responsibilities with minimal disruption to the system.
The Kubernetes built-in service handles load balancing between replicas, automatically
routing traffic to all active pods. Newly created pods are labeled and integrated into the

Appl. Sci. 2025, 15, 10829

18 of 32

service mesh without requiring reconfiguration. This hybrid approach, which combines
autoscaling for stateless services and manual redundancy for stateful ones, ensures both
performance elasticity and high availability across the deployed architecture.

4.3.2. Data Flow Across Architectural Components

Following the description of the Kubernetes cluster and the logical deployment, the
operational data flow between the key components of the system is now examined and
illustrated in Figure 10.

Datadriven
Edge - Cloud

=4
&
o
=3
[}
B 2
2
5
~
[}
5

InfluxDB
Ar Y
y

&

BentoML

o

InfluxDB front Grafana

JaAe] Juoa g

= T
Ryu controller

3
=
Fl a
B

Jake] ssargug

1
: o0 =
. e ul
1 2
] . 1- <
AP ! External users o
:3 4 0 3 éﬁ\ 7 AP, :
= = = -
S HIR) HIE) .
i - - 1
lloTsensor X
lloTsensor lloTsensor 1
1
T
1+ Simulated wireless network - Mininet WiFi :
Ve o e . ___.1
Factory Floor
{ —> Sensor report Edge Inteligence —> Influx management — Data visualization }

Figure 10. Data flows between architectural components.

In the bottom-left of the diagram, the IloT layer represents the emulated factory floor
using Mininet-WiFi which instantiates a wireless SDN-enabled mesh network composed
of virtual IloT sensor nodes (denoted lloTSensor) and AP. Each sensor generates and
transmits periodic measurements as stated above in Section 4.2.1. The generated packets
traverse the SDN mesh, reach an Access Point (AP), and are routed through a Network
Address Translation (NAT) gateway to the Ryu controller in the ingress layer. The Ryu
controller processes the messages from the IIoT layer and enables the evaluation of sensor
efficiency and the monitoring of the network in real time by dynamically consulting two
services: (1) InfluxDB, to retrieve recent sensor metrics, and (2) BentoML, to invoke the
inference pipeline that determines if a sensor is in an anomalous state. Based on the
outcome of these interactions, the controller may trigger reconfiguration actions, such as
disassociating a sensor from its current AP and redirecting it to a better-performing one.

Parallel to this, external users interact with the system through the Users layer. All
incoming HTTP requests are routed via an Nginx proxy, which acts as the system’s single
entry point for external access. From there, the proxy forwards traffic to two front-end
services: (1) Grafana, which periodically queries InfluxDB to generate real-time dashboards
of sensor data, and (2) InfluxDB’s web UI, which allows system administrators to inspect,
query, and manage the time-series data directly.

Appl. Sci. 2025, 15, 10829

19 of 32

This multilayered data flow design enables continuous monitoring, intelligent infer-
ence, and user observability while maintaining architectural separation between emulated
devices, control logic, and user-facing services.

5. Experimental Evaluation

In this section, we present the experimental evaluation of the proposed architecture,
organized into three subsections: (i) Resource Utilization and Scalability, where we analyze
CPU, memory, and deployment time metrics as functions of system load and the number of
IIoT sensors; (ii) Inference and Data Ingestion Latency, which measures the average inference
time and the data ingestion latency into the database module using the hey tool; and (iii) Av-
erage Network Reconfiguration Time, in which we study the mean network reconfiguration
delay as the number of IIoT sensors varies. All tests were carried out on a DELL PowerEdge
R650 server equipped with two Intel® Xeon® Silver-4310 processors at 2.10 GHz (18 MB
cache), 512 GB of DDR4 RAM. The goal of this experimental evaluation is to quantify the
architecture’s performance and to assess its flexibility and scalability, as well as its ability to
adapt to varying QoS requirements and to autonomously reconfigure itself in response to
changing operational conditions.

5.1. Resource Utilization and Scalability

In this subsection, we evaluate the performance and scalability of the proposed archi-
tecture, focusing exclusively on the Edge and Cloud components. The Factory floor layer is
highly dependent on the specific requirements of each use case and may vary substantially
depending on the operational environment. As explained in previous sections, in our imple-
mentation, the Factory floor is emulated through a virtual machine running Mininet-WiFi,
emulating a wireless SDN topology with constrained IloT nodes. However, for the purpose
of this analysis, we limit the evaluation scope to the core functional blocks located at the
Edge and Cloud tiers of the architecture. We begin by analyzing the deployment time of the
entire system, broken down into its individual stages. Table 4 presents the mean execution
time for each step, along with its Confidence Interval (CI), repeating all the deployment
20 times. The total mean deployment time amounts to approximately 269.15 4= 1.69 s.

Table 4. Deployment time (mean =+ CI) per deployment step.

Step Time (s)
Dashboard 2.85+£0.17
Destroying deployments 4.704+0.22
Virtual machines provider 10.10 = 0.34
Master node setup 39.95+1.30
Metrics server setup 3.05£0.10
Namespaces setup 2.70£0.22
Data-driven deployment 515+0.49
Cointainerd runtime and Kubernetes install 198.65 = 1.36
Worker-1 association 1.00 £ 0.00
Worker-2 association 1.00 £ 0.00
All 269.15 £ 1.69

The most time-consuming phase is the installation of the container runtime and
the Kubernetes cluster, which includes the setup of containerd and essential Kubernetes
components. This step takes roughly 198.65 £ 1.36 s, representing nearly 74% of the total de-
ployment time. Following this, the setup of the master node requires around 39.95 +1.30 s,
which includes cluster initialization and control-plane configuration. Subsequent steps,
such as the provisioning of virtual machines (10.10 £ 0.34 s), namespace configuration

Appl. Sci. 2025, 15, 10829

20 of 32

(2.70 £0.22 s), and deployment of the datadriven services (5.15 & 0.49 s), contribute
marginally to the overall duration. The addition of worker nodes is almost instantaneous,
each requiring only one second, indicating the efficiency of the horizontal scaling process
once the cluster is operational. These results confirm that, despite the complexity of the
system, the deployment process is both time-efficient and repeatable, allowing for rapid
resetting in dynamic or multi-tenant environments.

Following the deployment time analysis, we examine the memory consumption
patterns of the key functional blocks located in the Edge and Cloud tiers. Table 5 reports
the average memory usage, expressed in MiB, along with the corresponding confidence
intervals, for each core service—BentoML, Grafana, InfluxDB, and Ryu—as a function of the
number of IIoT stations (STAs) per AP. As expected, BentoML exhibits the most significant
growth in memory consumption with increasing network load. Starting at 204.00 MiB with
a single STA, its usage peaks around 1005.46 MiB for 9 STAs per AP. Beyond this point,
memory consumption fluctuates moderately but remains within a stable operational range
between approximately 750 and 985 MiB. These results confirm that BentoML scales with
the number of concurrent inference requests, although horizontal scaling mitigates resource
saturation as described in the autoscaling configuration.

Grafana maintains relatively stable memory usage across all tested configurations.
With a baseline of 91.43 & 0.63 MiB, its consumption only slightly increases, reaching
101.78 £ 0.90 MiB at 17 STAs, before decreasing as fewer rendering operations are triggered
in higher-load scenarios—possibly due to visualization throttling or refresh limitations. A
sharp drop is observed after 23 STAs, likely caused by internal dashboard optimizations
or saturation effects. InfluxDB shows a consistent and gradual increase in memory usage
as the number of STAs grows. Beginning at 88.76 & 0.31 MiB with one STA, it reaches
131.57 +1.14 MiB at 29 STAs. This behavior reflects the expected trend for time-series
databases under increased write and query operations, with no indication of performance
degradation or memory leakage.

In contrast, Ryu demonstrates constant memory usage throughout the tests, main-
taining approximately 56 MiB regardless of system load. This consistency stems from
its lightweight nature as an SDN controller, whose control logic remains independent of
the number of STAs once the topology is instantiated. Overall, these results confirm the
memory efficiency and scalability of the architecture. The services behave predictably
under stress, and their resource profiles validate the decision to adopt a microservice-based
deployment strategy.

Table 6 presents the average CPU usage in millicores (A unit of measurement for CPU
resources, representing one-thousandth of a core (1/1000), 1000 millicores is equivalent to
one full core) for each core component of the architecture—BentoML, Grafana, InfluxDB,
and Ryu—as a function of the number of IIoT sensor nodes. As expected, BentoML
exhibits a sharp increase in CPU usage as the number of IIoT sensors grows, reaching its
peak consumption at 25 STAs with approximately 301.29 £ 26.98 millicores. This trend
highlights the computational demand required to perform AI/ML inference tasks as more
data is ingested. However, beyond this point, the load shows a slight decline, likely due to
load balancing or inference batching effects at the service level. InfluxDB also demonstrates
a consistent growth in CPU consumption, with usage rising from 13.89 & 0.36 millicores
at 1 STA to a peak of 340.67 £ 37.68 millicores at 25 STAs. This behaviour is consistent
with the expected increase in write operations and query volume resulting from higher
sensor activity.

Ryu, the control module, shows a significant increase in CPU usage between 1 and
9 STAs, reaching 168.85 + 8.74 millicores, and then continues to fluctuate moderately.
This indicates that Ryu actively participates in the control loop and OpenFlow event

Appl. Sci. 2025, 15, 10829

21 of 32

handling, particularly during network reconfiguration and routing decisions. In contrast,
Grafana remains relatively lightweight until the 11 STAs mark, after which a sharp drop in
CPU consumption is observed, settling near 2.6 millicores for 25 or more STAs/AP. This
behaviour is attributed to Grafana’s internal optimization, caching, and the fact that it only
renders dashboards periodically, reducing its load during periods of steady-state operation.

Table 5. Memory (MiB) consumption (mean =+ CI) per service as a function of STAs per AP.

STAs/AP BentoML Grafana InfluxDB Ryu
1 204.00 £+ 0.00 91.43+0.63 88.76 £0.31 56.00 £ 0.00
3 371.42 +£12.20 93.85+0.32 90.19 +0.49 56.00 & 0.00
5 870.93 £22.28 95.09 +0.39 92.17 +0.52 56.00 & 0.00
7 985.79 £26.21 98.42 +0.90 96.65 1 0.46 56.00 & 0.00
9 1005.46 £+ 19.87 97.51£0.81 100.49 £ 0.48 56.00 & 0.00
11 995.21 +£21.21 96.17 £ 0.59 104.32 £ 0.50 56.00 £ 0.00
13 754.61 £ 33.64 89.65+1.93 106.57 £ 0.64 56.10 +0.05
15 939.22 £29.45 99.89 £+ 0.60 111.89 £ 0.65 56.12 +0.05
17 883.30 + 27.66 101.78 +0.90 116.83 +0.64 56.12 +0.05
19 753.59 + 34.64 101.27 £ 0.67 121.23 £ 0.61 56.10 £ 0.04
21 922.75 £ 30.98 98.84 £ 0.48 123.76 +0.67 56.11 £0.05
23 978.33 +£29.24 85.62 +£2.12 12417 £ 0.55 56.23 +0.09
25 985.62 £ 29.87 67.03 £0.02 124.97 +£0.94 56.41 £0.12
27 867.90 + 27.61 67.00 £ 0.00 128.22 +1.04 56.21 £ 0.08
29 940.72 £33.25 67.00 £ 0.00 131.57 +1.14 56.22 £ 0.08

Table 6. CPU (milicores) usage (mean =+ CI) per service as a function of STAs per AP.

STAs/AP BentoML Grafana InfluxDB Ryu

1 8.434+0.53 11.78 £0.27 13.89 £0.36 6.57 £ 0.60

3 59.31 +£7.20 25454143 46.25 4+ 2.31 41.65+3.98

5 178.19 +12.43 40.61 £1.50 89.91+293 105.05 £7.55
7 298.41+£17.18 56.78 £1.27 141.19 +4.53 176.31 £12.10
9 295.90 £ 30.00 66.61 +1.23 170.73 £5.57 168.85 - 8.74
11 228.97 £23.22 71.13+£1.29 178.81+£7.99 133.68 £ 11.82
13 176.43 +18.55 57.09 +4.99 172.62 £11.41 118.10 £10.73
15 257.53 £21.87 80.34 £1.52 253.61 £15.26 157.68 +10.47
17 199.18 4 24.89 87.55+1.46 276.98 £22.19 125.38 +11.99
19 135.35 4 24.65 87.31+1.84 263.97 £27.62 86.77 £11.05
21 235.98 £26.71 80.83 £1.74 333.00 £30.25 143.01 +£10.19
23 244.67 £22.94 36.77 £ 5.42 337.63 +43.43 148.53 £11.18
25 301.29 £26.98 2.55+0.12 340.67 £ 37.68 177.85 +11.75
27 198.55 +27.70 2.65+0.11 319.08 £ 46.02 118.63 +9.19
29 240.38 £19.27 2.63£0.11 310.49 £31.55 155.17 +8.24

To further investigate the scaling behaviour of BentoML, the CPU consumption was
analysed in greater detail for the scenario with 25 STAs per AP. As illustrated in Figure 11,
an initial CPU usage peak is observed due to a single instance handling the entire incoming
workload. However, the system progressively spawns additional BentoML replicas in
response to the growing demand, effectively distributing the workload. This behavior
reflects the activation of the HPA and demonstrates that while the architecture scales with
the number of active IloT devices, the components show varying degrees of sensitivity
to workload increases. In particular, BentoML and InfluxDB are the most CPU-intensive
services, warranting particular attention in sizing and autoscaling strategies.

Appl. Sci. 2025, 15, 10829

22 of 32

CPU usage BentoML | STAs per AP: 25
T T T

1200 T
1000 [~ B
800 b
%]
o P
8 oo .
400 - -
200 R 4
0 | | | =
0 120 240 360 480 600 720 840 960
Time [s]
‘ Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 e Total consumption

Figure 11. CPU usage of BentoML autoscaling for 25 STAs per AP.

Finally, an evaluation of the worst-case recovery time of the proposed architecture is
presented. Obtaining these estimates delimits the system’s expected behavior and charac-
terizes its response capacity. To measure these times for each deployed service, a controlled
failure is induced, and the interval during which the service remains unresponsive is
measured. The measured downtime comprises the time for Kubernetes to detect that the
container is unhealthy, schedule and instantiate a replacement container, initialize it, and
attach it to the ingress network. The analysis is conducted under a worst-case scenario
in which the fault-tolerance and reliability mechanisms discussed earlier are disabled. To
obtain representative estimates, the experiment proceeds as follows. The service health end-
point is probed continuously at intervals of T, = 20 ms. While probing, the container is
deliberately terminated. The test ends when the service regains availability. Independence
between tests is ensured by an idle period of Tj;;, = 4 min without traffic before each sub-
sequent iteration. Each test is repeated 30 times per service. The results shown in Table 7
indicate no significant differences in recovery times across services, reflecting that recovery
is delegated to the container orchestrator and depends largely on the underlying hardware,
yet with worst-case recovery times remaining on the order of one minute substantiating the
reliability of the architecture even without service-specific redundancy mechanisms, with
Grafana exhibiting 70.63 s &= 19.47 as the highest mean and the Ryu controller 62.11 s + 19.47
as the lowest.

Table 7. Worst-case recovery time (mean =+ CI) per service.

Service Time (s)
Grafana 70.63 +19.47
BentoML 65.53 £19.11
InfluxDB 62.57 +19.29
Ryu 62.11 £19.05

5.2. Inference and Data Ingestion Latency

This subsection evaluates the average inference latency of the BentoML service and
the average data access latency of the InfluxDB database. Both tests are conducted using
the hey [34] benchmarking tool, through a custom script that generates concurrent load
targeting the BentoML inference service and the InfluxDB data query interface.

Appl. Sci. 2025, 15, 10829

23 of 32

The objective is to assess the impact of autoscaling on BentoML and the responsiveness
of InfluxDB, thus providing insight into the system’s overall performance under realistic
workloads. To this end, concurrent HTTP requests are issued, progressively increasing
the number of simultaneous connections from 1 to 100. Each batch of concurrent requests,
denoted by C,, is treated as a single test instance. For instance, setting C, = 10 implies
the launch of 10 parallel requests constituting one experimental run. This methodology is
critical to ensure consistency and statistical reliability in the results; otherwise, fragmented
or asynchronous measurements would compromise validity. For each test, 10 x C; re-
quests are issued, where C, € {1,...,100}. Following each batch, a cooldown period is
enforced to allow the system to return to its idle state—specifically, when BentoML runs
with only one active container and InfluxDB exhibits baseline load conditions. Each test
scenario is repeated 25 times, originating from the Ryu controller container (which would
normally trigger such data flows), while keeping the Mininet topology inactive to eliminate
interference. The average results are shown in Figures 12-15.

Figure 12 presents the average response time of the BentoML service as a function of
the number of concurrent requests. A quasi-linear increase in response time is observed,
reaching a maximum latency of approximately 350 ms under 100 concurrent requests. The
figure exhibits three distinguishable phases. In the initial phase, from 0 to 15 concurrent
requests, only a single container is active, resulting in the steepest latency slope. This delay
triggers the autoscaling policy, initiating the deployment of additional BentoML replicas.
The intermediate phase, from 15 to 25 concurrent requests, shows a continued increase
in response time, as the autoscaler gradually adds replicas until the upper limit of five is
reached. Beyond 25 requests, in the final phase, the response time continues to grow but at
a significantly reduced rate, reflecting the load balancing across multiple replicas and the
amortization of computational cost.

Mean Response Time. BentoML

Response Time [s]

0 L L L L 1

0 20 40 60 80 100
Concurrent Connections (c)

Figure 12. Average BentoML inference time as a function of concurrent requests.

In contrast, Figure 13 depicts the results of the same experimental procedure applied to
the InfluxDB service, focusing on database read operations instead of inference tasks. The
observed latency remains remarkably stable throughout the experiment, with a maximum
delay of approximately 480 ms under peak concurrency. This behavior is particularly
notable given the absence of an autoscaling mechanism in InfluxDB—a design choice
intended to preserve data consistency. The figure reveals a potential logarithmic growth
trend in the response time, indicating scalable performance despite increasing load.

Appl. Sci. 2025, 15, 10829

24 of 32

0.5 Mean Response Time. InfluxDB

Response Time [s]

0 L 1 L L]
0 20 40 60 80 100

Concurrent Connections (c)

Figure 13. Average InfluxDB data ingestion time as a function of concurrent requests.

The following two figures complement the previous analysis by incorporating HTTP
response codes into the evaluation. This enhancement enables the identification of success-
ful and failed requests, where any status code other than 200 OK is considered a failure.
Additionally, this study integrates QoS constraints by examining how the system behaves
under different maximum response time thresholds (Tmax), specifically from 0.1 to 0.5 s.
To estimate the blocking probability (P,) of each service, we compute the ratio between
the number of failed requests (those with non-200 responses or those exceeding the Tinax
threshold) and the total number of requests. The results for both BentoML and InfluxDB are
depicted in Figures 14 and 15, respectively. In Figure 14, each curve illustrates the evolution
of P, as a function of concurrent request load under varying QoS levels. The autoscaling
mechanism of BentoML significantly mitigates P, once more than one replica is deployed.
For example, at Tmax = 0.2 s, P, drops from 0.9 with 15 concurrent requests to below 0.02
when the load ranges between 25 and 40 requests. This highlights the efficacy of autoscaling
in maintaining service quality under increasing demand. However, for more stringent
QoS thresholds (Tmax = 0.1 s), even moderate loads lead to higher blocking probabilities,
mainly due to the additional overhead introduced by the dynamic load balancer and the
inherent computational time required by each inference, which, as shown previously, may
reach up to 0.05 s even under minimal load.

Inference Service Performance. BentoML

1r- PPy
T.08 |
=
706 -
<
S
£ 0.4 -
g
< 0.2 -
Q
2 g o
m Qes==taws M e Ry e e B SR e B RN R R ERERN MR et esc it Moo R M EEETH = =
10 20 30 40 50 60 70 80 90 100
Concurrent Connections [C]
‘—O—Timeout =01s —¥—Timeout=02s Timeout=0.3s —*—Timeout=04s —=—Timeout=0.5s ‘

Figure 14. BentoML blocking probability under varying QoS thresholds.

Appl. Sci. 2025, 15, 10829

25 of 32

In contrast, Figure 15 displays the blocking probability analysis for the InfluxDB
service. In this case, the behavior is more predictable and less sensitive to load variations.
Although no autoscaling mechanism is employed, the database maintains a relatively
stable performance, and its blocking probability increases gradually with the load. This
confirms the robustness of InfluxDB for moderate querying workloads even in the absence
of elastic scalability.

Inference Service Performance. InfluxDB

o
0
T
q

1

|
q
3

o
)
T

|
i

©
N
T
Y

o
)
T

i

Blocking Probability [Pb]

,,,,,,,,, P o U= : S Enaaaaaas== | | | |

o
&

10 20 30 40 50 60 70 80 90 100
Concurrent Connections [C]

‘—O—Timeout =01s —¥—Timeout=02s Timeout=0.3s —*—Timeout=04s —=—Timeout=0.5s ‘

Figure 15. InfluxDB blocking probability under varying QoS thresholds.

These results also provide an opportunity to contextualize the notion of QoS and real-
time requirements in the IloT domain. While the measured blocking probability and latency
values indicate that the system can deliver consistent soft real-time performance, they do
not guarantee the stringent determinism required by hard real-time industrial control loops.
In this sense, the proposed architecture is well-suited for applications such as predictive
maintenance, anomaly detection, and monitoring tasks, where sub-second responsiveness
is sufficient to preserve operational efficiency. However, time-critical operations that
demand bounded and deterministic delays in the order of milliseconds, such as closed-loop
actuation, fall beyond the current scope of this framework.

5.3. Estimation of the Average Network Reconfiguration Time

This subsection presents the estimation of the average time required to complete a
reconfiguration cycle of the proposed architecture. The reconfiguration process is trig-
gered by the SDN controller implemented using the Ryu framework, which reacts to
anomalous behaviors detected in the IIoT sensor network. To quantify the reconfigu-
ration time, we decompose the process into its two principal time components: (i) the
time needed by Ryu to access and retrieve the sensor data from the InfluxDB time series
database, and (ii) the time required to send these data to the cloud-based inference ser-
vice hosted via BentoML and obtain a classification result. Since both communication
exchanges (Ryu — InfluxDB and Ryu — BentoML) have previously been characterized in
terms of their average response times under concurrent workloads, we define the mean
reconfiguration time, denoted Tyecon f, as:

Influx Bent
Trecon f = Trm]; + Tinifréro 1)
where T:;fdlux represents the average time required to retrieve the latest sensor readings

from InfluxDB, and Tlﬁ‘ﬁi" denotes the average inference time of the BentoML service.
These two operations encapsulate the dominant latencies in the reconfiguration loop.
Although an additional processing stage takes place within the Ryu controller—
responsible for composing the request to the inference service and interpreting the returned
result—this local computational effort involves a minimal number of Python operations
(e.g., parsing and condition checking), and its execution time is negligible compared to the

Appl. Sci. 2025, 15, 10829

26 of 32

network communication and inference overhead. This becomes increasingly valid as the
number of IIoT stations grows, as local operations do not scale proportionally with the num-
ber of sensors. Hence, the estimated T}co f Serves as a realistic upper bound for the average
time required to detect an anomaly and initiate a reconfiguration policy in the network,
allowing responsive and scalable management in dynamic industrial environments.

6. Discussion

The experimental results presented in the previous section provide clear evidence in
support to the main contributions of this work, demonstrating the feasibility and effec-
tiveness of the proposed end-to-end continuum architecture for IloT environments. The
following sections elaborate on three complementary perspectives: (i) the strengths and
key performance aspects of the architecture, which highlight the contributions of this
work in comparison with similar proposals; (ii) the limitations and particularities of the
emulated environments, which are expected to differ from real-world industrial settings;
and (iii) the security considerations associated with deploying the proposed framework in
critical IIoT domains, where confidentiality, authentication, and resilience to cyberattacks
play a decisive role.

6.1. Performance and Strengths of the Proposed Architecture

First, the deployment analysis confirms that our microservice-oriented solution, or-
chestrated through Kubernetes, achieves fast initialization times and efficient service man-
agement. All core components—including Ryu, InfluxDB, Grafana, and BentoML—exhibit
consistent behavior during deployment, with the overall setup fully operational in less than
270 s. These findings validate the practicality of the proposed infrastructure in scenarios
requiring rapid provisioning or frequent redeployments.

Regarding resource utilization, we observe that memory consumption remains stable
across all services, with predictable increases only in BentoML and InfluxDB as the number
of simulated IIoT sensors increases. This trend is expected due to the higher computational
and storage demands associated with inference and data ingestion in time series. CPU
consumption, on the other hand, showcases the scalability of the system. BentoML in
particular demonstrates effective dynamic scaling behavior: horizontal autoscaling is
triggered under increasing load, leading to a more balanced distribution of CPU usage
across replicas.

The latency evaluation further highlights the architecture’s ability to support soft real-
time operations. The BentoML inference service, even under high concurrency, maintains
an average response time below 350 ms, while InfluxDB consistently delivers sub-500 ms
read latencies. The estimation of the mean reconfiguration time, approximately 800 ms,
computed as the sum of average data access and inference durations, indicates that the
system can react to network changes and anomalies with sub-second responsiveness. How-
ever, such delay values are more suitable for applications like predictive maintenance or
anomaly detection, where near-real-time reaction is acceptable, rather than for closed-loop
control tasks that typically require delays below tens of milliseconds. This contextualization
is critical to understand the applicability of the proposed solution in different IloT domains.

Additionally, the blocking probability analysis under different QoS thresholds reveals
that autoscaling plays a key role in preserving service availability. BentoML’s blocking
probability drastically decreases when the number of concurrent requests falls within
the scaling threshold, underscoring the benefit of elastic service provisioning. InfluxDB
maintains a relatively stable performance profile without scaling, confirming its robustness
for read-heavy workloads.

Appl. Sci. 2025, 15, 10829 27 of 32

To further substantiate the performance and strengths of the proposed architecture,
we provide a qualitative comparison against two representative state-of-the-art approaches:
(i) the SEGA framework [19], which adopts Docker-based containerization for secured
machine monitoring, and (ii) the PoC reference implementation [10], which relies on
traditional virtualization techniques for edge-cloud orchestration. By contrast, our proposal
builds upon a microservice paradigm orchestrated with Kubernetes, providing a higher
degree of elasticity and automation. This comparison is intentionally qualitative, as the
architectural paradigms differ significantly and a direct numerical benchmarking would be
misleading. Instead, the table below highlights relative characteristics in terms of reliability,
redundancy, autoscaling capabilities, and resource consumption.

As Table 8 indicates, the proposed Kubernetes-based microservice architecture stands
out in terms of elasticity, automated redundancy, and scalability, while SEGA provides
strong security and container-level modularity optimized for machine monitoring, and PoC
highlights the robustness of traditional virtualization, albeit with higher overhead. This
qualitative benchmarking underlines the relative advantages of the proposed approach
within the broader landscape of IIoT architectural designs.

Table 8. Qualitative comparison of representative IIoT architectures.

Architecture Reliability Redundancy/Autoscaling Resource Consumption
SEGA [19] Low Basic redundancy, no orchestration autoscaling Lightweight, limited elasticity
PoC [10] Moderate Limited, manual provisioning High overhead, slow provisioning
Proposed High Native redundancy and autoscaling (HPA) Efficient, elastic

6.2. Limitations and Particularities of the Emulated Industrial Environment

The entire system has been implemented and validated on a high-performance server,
relying on emulated wireless topologies that approximate realistic I[loT deployments. While
this approach enables repeatable experimentation and controlled benchmarking, it in-
evitably introduces a gap with respect to real-world industrial networks. In particular,
link models provided by emulation tools such as Mininet-WiFi cannot fully capture the
deterministic and time-sensitive behavior of industrial field networks, including features
such as bounded latency, guaranteed reliability, and traffic scheduling mechanisms charac-
teristic of Time-Sensitive Networking (TSN). As a result, latency and jitter results reported
here should be interpreted as indicative rather than definitive for industrial-grade deploy-
ments. The reproducibility of our results is guaranteed by the open-source release [26] of
all deployment scripts, implementation, and datasets. This ensures transparency, facilitates
community adoption, and enables further extensions of this work by other researchers.
Nonetheless, it is also important to acknowledge that several of the networking proto-
cols cited in this work (e.g., 5G, WiMAX, Wi-Fi, and 6G) are either unavailable in certain
industrial environments or still at a theoretical stage. In practice, many industrial deploy-
ments rely on private 5G backbones or dedicated wired infrastructures to guarantee service
continuity. The reliability of the proposed architecture in scenarios with constrained or
unreliable bandwidth is thus an open issue. Future work will extend the evaluation toward
industrial-grade connectivity technologies and IloT hardware, with a particular focus on
TSN, redundant wired backbones, and consolidated fieldbus standards, to strengthen ro-
bustness under realistic communication constraints. Finally, while this work has focused on
manufacturing-oriented IloT scenarios, it is important to emphasize that the proposed ar-
chitecture is not limited to this vertical. Potential extensions include its application to other
critical domains such as smart energy grids, logistics, and healthcare, where the ability to
combine cloud-edge collaboration, elastic scaling, and real-time monitoring could also pro-

Appl. Sci. 2025, 15, 10829

28 of 32

vide significant benefits. Highlighting these additional scenarios broadens the applicability
and impact of the framework, paving the way for future cross-domain validation.

6.3. Security Considerations in IloT Deployments

While the primary focus of this work has been on performance, scalability, and or-
chestration, it is essential to acknowledge that security is a critical concern in industrial
environments. In particular, mechanisms for ensuring data confidentiality, robust authen-
tication, and resilience against cyberattacks are indispensable for the safe deployment of
[oT architectures. The proposed framework already benefits from the inherent isolation
and modularity provided by containerized microservices orchestrated through Kubernetes.
This enables the enforcement of access control policies, namespace isolation, and secure
inter-service communication. Additionally, existing Kubernetes-native solutions, such as
secrets management and role-based access control, can be directly integrated to strengthen
authentication and authorization across the continuum.

Regarding confidentiality and integrity of the data, encrypted communication channels
(e.g., Transport Layer Security (TLS) or Internet Protocol Security (IPsec)) can be employed
to secure telemetry flows between sensors, edge nodes, and cloud services. Furthermore,
the adoption of industrial standards for secure networking, including OPC UA Security
and IEEE 802.1X, represents a promising direction to reinforce trust in data exchange.
Finally, the resilience of the system to cyberattacks and failures can be enhanced through
redundancy and rapid recovery mechanisms. The proposed architecture already supports
active-standby strategies and autoscaling, which mitigate denial-of-service conditions and
facilitate fast recovery from component failures. Future work will extend these aspects
by exploring intrusion detection mechanisms tailored for IloT traffic patterns, as well as
formal resilience testing under fault-injection scenarios.

7. Conclusions

This work has presented a novel, fully containerized edge-cloud architecture designed
to support adaptive and data-driven decision-making in IloT environments. The proposed
architecture addresses critical limitations identified in the state of the art, including the lack
of end-to-end integration across the IloT-edge-cloud continuum, the absence of runtime
reconfiguration mechanisms based on online analytics, and the limited scalability and
deployment readiness of existing prototypes.

Through a comprehensive experimental evaluation, several key findings have emerged.
First, the system demonstrates rapid deployment capabilities, achieving full operational
readiness in less than five minutes. Second, the architecture exhibits stable and efficient
resource utilization, with predictable memory and CPU usage patterns across the mi-
croservices. Notably, the BentoML inference service benefits significantly from horizontal
autoscaling, maintaining low response times even under high concurrent request loads.
Furthermore, InfluxDB maintains low-latency data access throughout all experiments,
highlighting its suitability for continuous monitoring in IIoT scenarios. This enables us
to obtain the estimation of the average network reconfiguration time, derived from the
combination of DB access and inference response times. Results indicate that the system can
support sub-second reconfiguration cycles, essential for real-time adaptation in industrial
deployments. Moreover, the blocking probability analysis under various QoS thresholds
underscores the benefits of elastic scaling, as it substantially reduces the probability of
service degradation under load.

Beyond its technical validation, this work introduces a disruptive architecture that
bridges gaps in the literature by integrating inference, telemetry, and SDN control into a
unified and reproducible framework by releasing the entire system and datasets as open

Appl. Sci. 2025, 15, 10829

29 of 32

source. Looking forward, future work will focus on two main directions. First, we aim to ex-
tend the validation towards industrial-grade connectivity technologies and IloT hardware,
with a particular focus on TSN, redundant wired backbones, and consolidated fieldbus
standards. These additions will strengthen the robustness of the architecture under realistic
communication constraints and further bridge the gap between emulated environments
and operational industrial deployments. Second, we plan to explore the use of advanced
SDN controllers, specifically TeraFlowSDN, in conjunction with a Programming Protocol-
independent Packet Processors (P4) based southbound interface via PARuntime. This shift
from OpenFlow to P4 is motivated by the growing need for programmable data planes
in industrial networks, where customized and deterministic packet processing can offer
significant advantages. Leveraging programmable hardware compatible with P4 may
unlock new opportunities for fine-grained control, performance optimization, and security
enforcement in next-generation IloT infrastructures.

In addition, while the current inference service is deployed in the cloud, where vir-
tually unlimited computational resources can be assumed, the migration of this service
toward the edge will be investigated in future work. Such a shift will necessarily impose
constraints on computation and memory, and will therefore require a systematic study of
alternative machine learning models (e.g., lightweight Deep Neural Networks (DNNs) or
ensemble methods) to balance accuracy, inference latency, and resource consumption in
constrained environments. Another important direction concerns the evaluation of the
architecture with more representative datasets. In the present work, a publicly available
dataset was employed primarily to validate the end-to-end orchestration and reconfigu-
ration mechanisms. Although changing the dataset would not affect the latency of data
movement across the architecture, it would directly impact the accuracy of the inference
service. Thus, future work will consider heterogeneous and industrial-grade datasets to
capture the variability and dynamics of real production environments, thereby increasing
the external validity of the experimental results.

Author Contributions: Conceptualization, D.C. and E.R.; methodology, E.R.; software, D.C. and
J.D.-E,; validation, D.C. and N.M.; formal analysis, D.C., D.L.-P. and J.M.A_; investigation, D.C.,
E.R. and J.M.A; resources, D.L.-P,, E.R. and M.S.; data curation, D.C. and N.M.; writing—original
draft preparation, D.C. and].D.-F,; writing—review and editing, N.M., D.L.-P, ER., M.S. and JM.A;
visualization,].D.-E,, N.M. and D.L.-P,; supervision, D.C., E.R. and M.S.; project administration, D.L.-P.
and E.R.; funding acquisition, D.L.-P. and E.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the following projects and institutions: project TUCAN6-CM
(TEC-2024/COM-460), funded by the Comunidad de Madrid under ORDEN 5696/2024, project VER-
ANO (CM/DEMG/2024-038), funded through the CM-UAH collaboration agreement. This work was
also partially supported by the European Union—Next Generation EU under the Italian National Re-
covery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.3, CUP E83C22004640001,
partnership on “Telecommunications of the Future” (PE00000001—program “RESTART”). Finally,
this work also benefited from a grant from Universidad de Alcald through “Contratos Predoctorales
de Formacién de Personal Investigador—FPI-UAH 2022”.

Data Availability Statement: The original data on the deployment of the architecture, as well as
scripts and trained models, are openly available at https:/ /github.com /NETSERV-UAH/datadriven-
poc (accessed on 3 October 2025).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://github.com/NETSERV-UAH/datadriven-poc
https://github.com/NETSERV-UAH/datadriven-poc

Appl. Sci. 2025, 15, 10829

30 of 32

Abbreviations
The following abbreviations are used in this manuscript:

3GPP Third-Generation Partnership Project

5G Fifth Generation of Cellular Networks
6G Sixth Generation of Cellular Networks
Al Artificial Intelligence

AL Application Layer

API Application Programming Interface
AP Access Point

CI Confidence Interval

CNI Container Network Interface

CNN Convolutional Neural Network
CoAP Constrained Application Protocol
CPS Cyber-Physical System

DB Database

DMDc Dynamic Mode Decomposition with control
DNN Deep Neural Network

DoS Denial of Service

DTL Digital Twin Layer

DTN Digital Twin Network

ECC Elliptic Curve Cryptography
eMBB enhanced Mobile Broadband
FaaS Function-as-a-Service

GAN Generative Adversarial Network
GW Gateway

HPA Horizontal Pod Autoscaler

IIoT Industrial Internet of Things
IoT Internet of Things

IPsec Internet Protocol Security
LSTM Long Short-Term Memory
ML Machine Learning

mMTC massive Machine-Type Communications
MQTT Message Queuing Telemetry Transport
NB-IoT NarrowBand Internet of Things

OIPT Organizational Information Processing Theory

OVT Organizing Vision Theory

P4 Programming Protocol-independent Packet Processors
PNL Physical Network Layer

PoC Proof of Concept

PVCs Persistent Volume Claims

QoS Quality of Service
SDN Software-Defined Networking

STA Station

SVM Support Vector Machine
TLS Transport Layer Security
TRL Technology Readiness Level
TSN Time-Sensitive Networking

URLLC Ultra-Reliable Low Latency Communication
WOA Whale Optimization Algorithm

Appl. Sci. 2025, 15, 10829 31 0f 32

References

1. Boyes, H.; Hallaq, B.; Cunningham, J.; Watson, T. The industrial internet of things (IloT): An analysis framework. Comput. Ind.
2018, 101, 1-12. [CrossRef]

2. Rojas, E.; Carrascal, D.; Lopez-Pajares, D.; Alvarez-Horcajo, J.; Carral, J.A.; Arco,].M.; Martinez-Yelmo, I. A survey on
ai-empowered softwarized industrial iot networks. Electronics 2024, 13, 1979. [CrossRef]

3. Qiu, T; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge computing in industrial internet of things: Architecture,
advances and challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2462-2488. [CrossRef]

4. Hou, K.M,; Diao, X,; Shi, H,; Ding, H.; Zhou, H.; de Vaulx, C. Trends and challenges in AloT/IloT/IoT implementation. Sensors
2023, 23, 5074. [CrossRef] [PubMed]

5. Rojas, E.; Carrascal, D.; Lopez-Pajares, D.; Manso, N.; Arco,].M. Towards ai-enabled cloud continuum for iiot: Challenges and
opportunities. In Proceedings of the 2024 International Conference on Artificial Intelligence, Computer, Data Sciences and
Applications (ACDSA), Victoria, Seychelles, 1-2 February 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1-6.

6. Uusitalo, M.A.; Rugeland, P.,; Boldi, M.R; Strinati, E.C.; Demestichas, P.; Ericson, M.; Fettweis, G.P; Filippou, M.C.; Gati, A;
Hamon, M.H.; et al. 6G vision, value, use cases and technologies from European 6G flagship project Hexa-X. IEEE Access 2021,
9, 160004-160020. [CrossRef]

7. Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The road towards 6G: A comprehensive survey. IEEE Open J. Commun. Soc. 2021,
2, 334-366. [CrossRef]

8. Onate, W,; Sanz, R. Analysis of architectures implemented for IIoT. Heliyon 2023, 9, e12868. [CrossRef] [PubMed]

9. Lin, X. An overview of 5G advanced evolution in 3GPP release 18. IEEE Commun. Stand. Mag. 2022, 6, 77-83. [CrossRef]

10. Carrascal, D.; Rojas, E.; Lopez-Pajares, D.; Manso, N.; Alvarez-Horcajo, J.; Martinez-Yelmo, I. Softwarized Data-Driven
Architecture for Edge Computing IIoT Environments: A Proof of Concept. In Proceedings of the 2025 28th Conference on
Innovation in Clouds, Internet and Networks (ICIN), Paris, France, 11-14 March 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 64-68.

11. Hu, P. A system architecture for software-defined industrial Internet of Things. In Proceedings of the 2015 IEEE International
Conference on Ubiquitous Wireless Broadband (ICUWB), Montreal, QC, Canada, 4-7 October 2015; IEEE: Piscataway, NJ, USA,
2015; pp. 1-5.

12. Wang, K,; Wang, Y.; Sun, Y.; Guo, S.; Wu, J. Green industrial Internet of Things architecture: An energy-efficient perspective. IEEE
Commun. Mag. 2016, 54, 48-54. [CrossRef]

13. Strauf}, P.; Schmitz, M.; Wostmann, R.; Deuse, J. Enabling of predictive maintenance in the brownfield through low-cost sensors,
an IloT-architecture and machine learning. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data),
Seattle, WA, USA, 10-13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1474-1483.

14. Dejene, D.; Tiwari, B.; Tiwari, V. TD2SecloT: Temporal, data-driven and dynamic network layer based security architecture for
industrial IoT. IJIMAI 2020, 6, 146-156. [CrossRef]

15. Zhang, P; Wu, Y.; Zhu, H. Open ecosystem for future industrial Internet of things (IloT): Architecture and application. CSEE J.
Power Energy Syst. 2020, 6, 1-11. [CrossRef]

16. Taheri, R.; Shojafar, M.; Alazab, M.; Tafazolli, R. FED-IIoT: A robust federated malware detection architecture in industrial IoT.
IEEE Trans. Ind. Inform. 2020, 17, 8442-8452. [CrossRef]

17. Zhang, Y.; Sun, W.; Shi, Y. Architecture and Implementation of Industrial Internet of Things (IloT) Gateway. In Proceedings of
the 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Weihai, China,
14-16 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 114-120.

18. Chandra Shekhar Rao, V.; Kumarswamy, P.; Phridviraj, M.; Venkatramulu, S.; Subba Rao, V. 5G enabled industrial internet of
things (IIoT) architecture for smart manufacturing. In Data Engineering and Communication Technology: Proceedings of ICDECT 2020;
Springer: Singapore, 2021; pp. 193-201.

19. Ghosh, A ; Mukherjee, A.; Misra, S. SEGA: Secured edge gateway microservices architecture for IloT-based machine monitoring.
IEEE Trans. Ind. Inform. 2021, 18, 1949-1956. [CrossRef]

20. Lin, Y.; Gao, Z,; Shi, W,; Wang, Q.; Li, H.; Wang, M.; Yang, Y.; Rui, L. A novel architecture combining oracle with decentralized
learning for IloT. IEEE Internet Things J. 2022, 10, 3774-3785. [CrossRef]

21. Sarkar, J.L.; Ramasamy, V.; Majumder, A; Pati, B.; Panigrahi, C.R.; Wang, W.; Qureshi, N.M.E; Su, C.; Dev, K. I-Health: SDN-based
fog architecture for IIoT applications in healthcare. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 21, 644-651. [CrossRef]
[PubMed]

22. Isah, A,; Shin, H.; Aliyu, I; Oh, S.; Lee, S.; Park, J.; Hahn, M.; Kim, J. A data-driven digital twin network architecture in the
Industrial Internet of Things (IloT) applications. arXiv 2023, arXiv:2312.14930.

23. Gupta, S.; Modgil, S.; Bhushan, B.; Sivarajah, U.; Banerjee, S. Design and implementation of an IIoT driven information system: A
case study. Inf. Syst. Front. 2025, 27, 523-537. [CrossRef]

24. Peruthambi, V,; Pandiri, L.; Kaulwar, PK.; Koppolu, HK.R.; Adusupalli, B.; Pamisetty, A. Big Data-Driven Predictive Maintenance

for Industrial IoT (IIoT) Systems. Metall. Mater. Eng. 2025, 31, 21-30. [CrossRef] [PubMed]

http://doi.org/10.1016/j.compind.2018.04.015
http://dx.doi.org/10.3390/electronics13101979
http://dx.doi.org/10.1109/COMST.2020.3009103
http://dx.doi.org/10.3390/s23115074
http://www.ncbi.nlm.nih.gov/pubmed/37299800
http://dx.doi.org/10.1109/ACCESS.2021.3130030
http://dx.doi.org/10.1109/OJCOMS.2021.3057679
http://dx.doi.org/10.1016/j.heliyon.2023.e12868
http://www.ncbi.nlm.nih.gov/pubmed/36691530
http://dx.doi.org/10.1109/MCOMSTD.0001.2200001
http://dx.doi.org/10.1109/MCOM.2016.1600399CM
http://dx.doi.org/10.9781/ijimai.2020.10.002
http://dx.doi.org/10.17775/cseejpes.2019.01810
http://dx.doi.org/10.1109/TII.2020.3043458
http://dx.doi.org/10.1109/TII.2021.3102158
http://dx.doi.org/10.1109/JIOT.2022.3150789
http://dx.doi.org/10.1109/TCBB.2022.3193918
http://www.ncbi.nlm.nih.gov/pubmed/35881600
http://dx.doi.org/10.1007/s10796-023-10451-0
http://dx.doi.org/10.63278/1316
http://www.ncbi.nlm.nih.gov/pubmed/41053741

Appl. Sci. 2025, 15, 10829 32 0f 32

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

Banitalebi Dehkordi, A. EDBLSD-IIoT: A comprehensive hybrid architecture for enhanced data security, reduced latency, and
optimized energy in industrial IoT networks. J. Supercomput. 2025, 81, 359. [CrossRef]

NETSERV-UAH. Datadriven-Poc: Kubernetes Deployment for Data-Driven IIoT Proof-of-Concept. 2025. Available online:
https:/ /github.com/NETSERV-UAH /datadriven-poc/tree/k8s-deploy-datadriven (accessed on 22 July 2025).

UC3M. 6G-DATADRIVEN-02-E9: Arquitectura del Sistema Revisada. Available online: https://unica6g.it.uc3m.es/wp-content/
uploads/2023/11/6G-DATADRIVEN-02-E9.pdf (accessed on 2 October 2025).

Ziya. Intelligent Manufacturing Dataset/Real-Time Sensor, Network, and Production Data for Al-Driven Efficiency Anal-
ysis. Available online: https://www.kaggle.com/datasets/ziya07/intelligent-manufacturing-dataset/data (accessed on 2
October 2025).

Fontes, R.R.; Afzal, S.; Brito, S.H.; Santos, M. A.; Rothenberg, C.E. Mininet-WiFi: Emulating software-defined wireless networks.
In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), Barcelona, Spain, 9-13
November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 384-389.

Kubo, R.; Fujita, T.; Agawa, Y.; Suzuki, H. Ryu SDN Framework. Open Source Software from NTT Laboratories. 2013. Available
online: https:/ /ryu-sdn.org/ (accessed on 2 October 2025).

InfluxData. InfluxDB: Open Source Time Series Database. 2023. Available online: https://www.influxdata.com/products/
influxdb/ (accessed on 25 July 2025).

BentoML Team. BentoML: The Unified Model Serving Framework. 2023. Available online: https://bentoml.com (accessed on 25
July 2025).

Grafana Labs. Grafana: The Open Observability Platform. 2023. Available online: https:/ /grafana.com (accessed on 25 July 2025).
Dogan,]J.; Contributors. hey: HTTP Load Generator, ApacheBench (ab) Replacement. 2023. Available online: https://github.
com/rakyll/hey (accessed on 25 July 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11227-024-06872-6
https://github.com/NETSERV-UAH/datadriven-poc/tree/k8s-deploy-datadriven
https://unica6g.it.uc3m.es/wp-content/uploads/2023/11/6G-DATADRIVEN-02-E9.pdf
https://unica6g.it.uc3m.es/wp-content/uploads/2023/11/6G-DATADRIVEN-02-E9.pdf
https://www.kaggle.com/datasets/ziya07/intelligent-manufacturing-dataset/data
https://ryu-sdn.org/
https://www.influxdata.com/products/influxdb/
https://www.influxdata.com/products/influxdb/
https://bentoml.com
https://grafana.com
https://github.com/rakyll/hey
https://github.com/rakyll/hey

	Introduction
	Related Work
	System Architecture
	Implementation and Deployment of the Architecture
	Dataset Analysis and Model Training
	IIoT Dataset Analysis
	Training of IIoT Sensor Efficiency Status Classification Model

	Implementation of Core Functional Blocks
	Factory Floor
	Control Module
	Database Module
	FaaS Module
	Monitoring Module

	Architecture Deployment on Kubernetes
	Scalability and Fault Tolerance Mechanisms
	Data Flow Across Architectural Components

	Experimental Evaluation
	Resource Utilization and Scalability
	Inference and Data Ingestion Latency
	Estimation of the Average Network Reconfiguration Time

	Discussion
	Performance and Strengths of the Proposed Architecture
	Limitations and Particularities of the Emulated Industrial Environment
	Security Considerations in IIoT Deployments

	Conclusions
	References

