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Abstract—With the miniaturization of DRAM technology,
memory devices have become increasingly susceptible to
hardware-based attacks that exploit physical proximity between
rows to alter or extract data. Notable among these are loop-
based attacks such as Rowhammer, which induces bit flips
in adjacent memory rows. Other known attacks, like Spectre,
leverage shared memory to infer confidential data by cache
access time estimations. To address these threats, which share
similar loop-based code patterns, we propose an integrated
detection system based on two data structures: xor filters (XF)
and Count-Min Sketches (CMS). The system requires only three
memory accesses per activation of a memory row to detect
loop attacks, filtering most malicious loops in a first stage (i.e.,
the XF) and monitoring the remaining ones in a second stage
(i.e., the CMS). An alert is triggered when a loop exceeds a
defined activation threshold. Experimental results demonstrate
that our approach effectively detects not only loop attacks but
also other anomalous instructions that generate suspicious loops,
achieving low undetected attack rates, on average below 0.4%,
while consuming minimal memory and computational resources.
These results position our system as a lightweight and reliable
defense against diverse loop-based memory attacks, unlike other
approaches that account for loops of a single attack type.

Index Terms—Rowhammer, Spectre, Loop-based hardware
attacks, CMS, XOR Filter

I. INTRODUCTION

Over the years, the size of DRAM chips has been con-
tinuously reduced to improve access speed and performance.
However, this miniaturization has also decreased the distance
between internal components, making memory cells more
susceptible to hardware-based security vulnerabilities. As a
result, new generations of DRAM are increasingly vulnerable
to physical-level attacks that aim to manipulate or extract
sensitive information by altering hardware behavior.

A prominent example is the Rowhammer attack [1], which
exploits charge leakage between adjacent rows by rapidly
activating a row in tight loops. This repeated access can induce
bit flips in nearby rows, allowing attackers to corrupt data
or even gain unauthorized access. Another important example
is Spectre [2], which abuses shared memory pages and the
behavior of cache memory to infer whether specific data has
been accessed by another process. It works by mistraining
the branch predictor to speculatively execute instructions that

access sensitive data, which are then leaked via microarchi-
tectural side effects such as cache timing. Though transient
in nature, these effects persist long enough to be measured,
revealing secrets without violating architectural isolation.

To mitigate such threats, various strategies have been de-
veloped [3]–[7]. One popular approach involves counting the
number of memory accesses per row or instructions using
hardware or software-based counters. When the number of
activations approaches the Rowhammer threshold (the min-
imum required to cause a bit flip), the system can trigger
a preventive action or alert. However, as DRAM densities
increase, this threshold decreases, demanding more accurate
and efficient tracking mechanisms. Other techniques, such as
increasing refresh rates or employing queue-based filtering,
can reduce vulnerability but often at the cost of performance
overhead.

Recent research has proposed more compact and config-
urable countermeasure designs using data structures such as
CMSs [8] to efficiently track memory activations. For instance,
CoMeT [5] and CMS-based detection for microarchitectural
attacks have demonstrated high detection accuracy using min-
imal resources. Yet, many of these solutions are tailored to
detect only Rowhammer and struggle with broader loop-based
threats, particularly those involving legitimate instructions
behaving abnormally.

Moreover, existing counters can suffer from saturation under
high instruction throughput, especially when multiple loops
are active simultaneously. This saturation can lead to false
positives, missed detections, or system instability. Addressing
counter overflow often requires additional processing and
memory access, which increases latency and power consump-
tion [9]–[11].

In this work, we propose a two-stage loop attack detection
system that combines two data structures, a XF and a CMS.
The first stage pre-filters memory accesses using the XF,
discarding most benign operations and passing only poten-
tially malicious instructions to the next stage. The second
stage counts repeated instructions using a CMS within a
configurable time window. If the count exceeds a dynamic
threshold, an alert is triggered; otherwise, the counters are
reset. This design enables accurate detection of different loop-979-8-3315-1489-1/25/$31.00 ©2025 IEEE



based attacks with only three memory accesses per instruction
and a low memory footprint.

The main contributions of this paper are:
1) A novel two-stage loop detection system using a XF and

CMS that requires only three memory accesses to check
each instruction.

2) Effective filtering of up to 98% of memory activations
from loop-based attacks (including Rowhammer and
Spectre) before they reach the counting stage.

3) Detection of anomalous looping patterns from legitimate
instructions, by tracking instruction-level repetitions us-
ing compact CMS counters.

4) Configurable alert mechanism, which raises alarms when
instruction repetition exceeds a threshold within a spec-
ified time window.

5) Compatibility with other mitigation techniques, making
our system integrable with existing defense mechanisms.

We validate our system through Java-based simulations under
three scenarios:

• Safe instruction loops across various thresholds and time
windows (to assess false alarms);

• Synthetic Rowhammer and Spectre attacks (to test detec-
tion rates); and

• Execution of a legitimate program under active attack (to
evaluate robustness and false negative rates).

The remaining part of the document is organized as follows:
Section II covers fundamental concepts related to loop attacks
and relevant probabilistic data structures. Section III presents
our proposal, which is based on an integrated data structure.
Section IV reports the experimental results, and Section V
provides the analysis and conclusions.

II. BACKGROUND

A. Microarchitectural Loop-based Attacks

Microarchitectural attacks exploit hardware-level features
and behaviors to bypass security boundaries. Two prominent
classes of such attacks, particularly relevant in the context
of loop-based memory access patterns, are Rowhammer and
Spectre. These attacks manipulate memory access operations
to induce faults or retrieve confidential data.

1) Rowhammer: Rowhammer is a hardware-based attack
that exploits the charge leakage vulnerability in DRAM cells.
DRAM memory is composed of rows of capacitors that
store bits of data. Over time, cells naturally leak charge, but
if certain rows are accessed (”hammered”) frequently, they
can induce bit flips in adjacent rows due to electromagnetic
interference or charge disturbance. This phenomenon is known
as ”row disturbance error” and was first demonstrated in [12].
Attackers repeatedly access two memory rows adjacent to
a target row, rapidly opening and closing them to induce a
bit flip in the victim row. The loops used to hammer the
rows involve legitimate memory instructions, but their pattern
creates an abnormal activation rate of DRAM rows. The
critical parameter here is the Rowhammer Threshold (RH-
TH), which refers to the minimum number of row activations

required to induce a bit flip, typically between 139K and 500K
activations within a refresh interval.

2) Spectre: Spectre is a class of speculative execution
attacks that exploit modern processors’ performance optimiza-
tion features to access and leak sensitive information across se-
curity boundaries [2]. At its core, Spectre manipulates branch
prediction and speculative execution to transiently execute
instructions that would not occur during correct program exe-
cution, thereby exposing data that should remain inaccessible.

The attack works by mistraining the processor’s branch
predictor to speculatively execute code along a mispredicted
path. During this speculative window, instructions can access
memory outside of their permitted context. Although the
results of speculative execution are eventually discarded, their
side effects (particularly on the cache) are not. By measuring
cache access times, an attacker can infer which memory
locations were accessed, effectively exfiltrating sensitive data.

Spectre attacks are typically carried out through tight in-
struction sequences crafted to manipulate speculative behavior
and measure resulting microarchitectural states. They do not
rely on software vulnerabilities in isolation, but rather on
fundamental architectural features such as out-of-order and
speculative execution pipelines. This makes them broadly ap-
plicable across different architectures and difficult to mitigate
completely without significant performance costs.

Several variants of Spectre have been developed, targeting
indirect branches, return addresses, and store-to-load forward-
ing, among others. These variants underline the pervasiveness
of speculative execution side channels and the need for both
hardware and software-level defenses [2], [13]. We specifically
focused on Spectre-v1, also known as Bounds Check By-
pass [2], using the reference implementation provided in [14].

B. Xor Filter

XFs are a family of compact, probabilistic data structures
used for membership testing, similar to Bloom filters [15]
but offering better memory efficiency and faster lookups [16].
XFs use three hash functions to map each element to three
positions in an array of fingerprints. During the build phase,
the xor of fingerprints from all three positions equals the
actual fingerprint of the element. At query time, an element’s
fingerprint is xored with the values at its hash-determined
positions. If the result matches the stored fingerprint, the
element is likely in the set.

Unlike Bloom filters, XFs use less space and have lower
false positive rates. Additionally, they support constant-time
queries and insertions with only three memory accesses,
making them highly efficient for hardware-level filtering where
latency and memory access are critical.

C. Count-Min Sketch

The CMS is a probabilistic, space-efficient data structure
designed for frequency estimation in data streams. It provides
fast and approximate counts of events, which is particularly
useful in systems with limited memory and high throughput
requirements [8].



A CMS consists of a two-dimensional array of counters
and a set of independent hash functions. For each incoming
element, the hash functions determine one counter in each
row to increment. To estimate the count of an element,
the algorithm takes the minimum value among the counters
indexed by the hash functions. This approach bounds the
overestimation error and supports constant-time updates and
queries.

Unlike Bloom filters, CMS supports frequency tracking
rather than membership testing, making it complementary to
XFs in multi-stage processing architectures.

III. LAD-IXOC

This paper proposes LAD-IXoC, a hardware-level system
for detecting loop attacks in DRAM memory, based on an
integrated data structure composed of an XF and a CMS.
The key advantage of this system lies in its two-stage de-
tection capability. In the first stage, it filters out the majority
of address-instruction tuples that do not correspond to any
installed program. If no attack is detected at this point, the
second stage checks whether the counters associated with the
tuple exceed a predefined threshold. If they do, an alarm is
triggered, indicating a potential loop attack.

A. Construction

The system leverages the integrated data structure intro-
duced in [17], which combines the capabilities of XFs and
CMS to perform both lookup and frequency estimation op-
erations using a single memory access. The construction of
the filter begins by calculating the memory required to store
N address-instruction tuples and their associated counters.
For an XF with an Undetected Attack probability of 2−r,
approximately 1.23×N rows of r bits are needed. Then, using
three independently distributed hash functions (h1, h2, and
h3), all legitimate address-instruction tuples are mapped to
three positions within the system, as illustrated in Fig. 1. The
three CMS counters corresponding to each tuple are initialized
to zero.

Fig. 1: Access to the integrated Xor Filter with CMS

B. Detection

Once all address-instruction tuples have been registered in
the system, the detection process can be activated. The first
stage aims to determine whether a given tuple belongs to any
legitimate program currently in execution. To achieve this, the
tuple is mapped, using the same three hash functions selected
during the construction phase, to three positions in the filter.

Fig. 2: Flowchart of the proposed attack detection process

The information stored at these positions is then retrieved: the
first f bits are used by the XF, while the subsequent c bits are
reserved for the CMS counters, which will only be used if the
second stage is reached.

Next, a bitwise xor operation is performed on the three f -bit
blocks: f1⊕f2⊕f3. If the result matches the fingerprint asso-
ciated with the tuple, defined during system construction, then
the tuple is considered legitimate. Otherwise, the instruction
is identified as illegitimate and an alert is triggered, signalling
a potential attack.

Because the use of an XF in the first stage and the detection
of legitimate loops entails a small undetected attack probability
(for example < 0.004 for r = 8), a second-stage verification is
required. This is carried out using the CMS counters accessed
in the first stage: c1, c2, and c3. The counters are incremented
by 1, and the minimum of them is selected. If, after a
predefined time window, this minimum counter exceeds a
given threshold, an alarm is triggered to indicate the detection
of an anomalous loop. Fig. 2 illustrates the system’s detection
flow diagram.

It is important to note that the system does not attempt to
classify the type of attack–whether it is caused by Rowham-
mer, Spectre, or merely an irregular loop of legitimate instruc-
tions. The precise identification and mitigation of such attacks
are beyond the scope of this work.

TABLE I: Benchmarks used
Benchmark # Static instructions # Executed instructions
Coremark 1290 73295
Median 1011 95147
Matrixmul 181 1.23E+05
Rsort 4460 71474
SHA 490 90139

IV. EXPERIMENTAL EVALUATION AND RESULTS

We evaluated our proposal through Java-based experiments.
Table I summarizes the programs used in our test environment,



TABLE II: Range of Thresholds and time Windows considered
Run 100 times for each pair (TH, TW)

Threshold (TH) 25 50 75 100 125 150
Time Window (TW) 50 100 150 200 250 300

including the number of instructions in each and the subset
of instructions executed. Table II presents the combinations
of threshold values and time windows considered to evaluate
the performance of our system. These parameters are used to
measure the probability of undetected attacks as well as the
number of false alarms generated by the system. Rowhammer
and Spectre attacks are used as reference cases.

For the experiments, we relied on the BOOM RISC-V
toolchain [14]. Three scenarios were considered to test the
integrated filter. In the first, only legitimate programs are
executed, representing an attack-free environment. The second
scenario includes only Rowhammer and Spectre attacks. The
third scenario reflects a realistic setting, where both legitimate
instructions and attacks (Rowhammer and Spectre) are present.

1) Scenario 1: In the first scenario, since no attacks are
present, only repeated instructions from legitimate programs
are counted. Whenever these repetitions exceed the defined
thresholds, an alarm is triggered. As there are no actual attacks,
these alarms are considered false alarms. We then compute
the average number of undetected attacks of the 5 programs
presented in Table II.

Figure 3 a) shows that threshold values below 50 result in
a higher number of false alarms, even across different time
window configurations. The time window defines the interval
at which alarms are reported to the system and the counters
are reset. In the worst-case scenario, false alarms remain below
1,000. This occurs because lower threshold values increase the
likelihood of legitimate loops exceeding the threshold.

Figure 3 b) displays the estimation error introduced by the
CMS. Notably, this error increases only in cases where the
threshold is particularly low.

2) Scenario 2: Only attacks running: Figure 4 shows the
probability of undetected attacks in the first stage (correspond-
ing to the XF) and the attacks detected in the second stage
(corresponding to the CMS): Rowhammer results are shown
in (a) and (b), and Spectre results in (c) and (d). The results
for both attacks demonstrate that the majority of attacks are
filtered in the first stage. For those that reach the second stage,
the CMS counters successfully identify them as attacks when
the threshold is below 100. For higher threshold values, the
system no longer considers these repetitions as attacks.

3) Scenario 3: safe instructions and attacks running:
Figure 5 presents the results for Scenario 3, including both
Rowhammer and Spectre attacks. In both cases, the percentage
of undetected attacks remains below 0.4%, consistent with
theoretical expectations. For attack detection in the CMS, the
behavior observed in Scenario 2 applies: when the threshold
is set below 100, all attacks are successfully detected.

A. Memory overhead comparison

In this section, a comparison between the proposed mech-
anism LAD-IXoC and other similar approaches that mitigate

(a)

(b)

Fig. 3: Scenario 1: a) Average false alarm number b) Average
error estimation of CMS

some loop attacks, specifically rowhammer, is presented. Table
III shows the memory overhead required by each proposal
to minimize the rowhammer threshold for CoMet, QPRAC,
START and LAD-IXoC.

TABLE III: Memory overhead per bank of 128K rows
Memory KB

CoMet SDRAM/CAM 3.2
QPRAC SDRAM 112
START SRAM/LLC 8
LAD-IXoC(simulated) SDRAM 158

More specifically, when normalized to a bank of 128 K
rows, START leverages the Last-Level Cache (LLC) on de-
mand and requires only 8 KB of dedicated SRAM per bank for
the most frequent activations. This footprint is modest—about
6% of a 128 KB bank—and benefits from ultra-low access
latency, but under sustained high activation rates the limited
number of cache-resident counters can be evicted, risking
undetected disturbance errors. QPRAC, by contrast, embeds
one full byte of counter state per row directly in DRAM,
resulting in 112 KB of SDRAM overhead per bank. Although



(a)

(b)

(c)

(d)

Fig. 4: Scenario 2: Probability of undetected attack and
number of attacks detected for Rowhammer in a) and b); and
for Spectre in c) and d)

(a)

(b)

(c)

(d)

Fig. 5: Scenario 3: Probability of undetected attack and
number of attacks detected for Rowhammer in a) and b); and
for Spectre in c) and d)



this design shifts all additional storage off-chip and avoids
consuming on-chip SRAM, it consumes nearly the entire
bank’s capacity and incurs extra DRAM-access latency on
every activation.

CoMet introduces a compact hybrid of a Count-Min Sketch
(CMS) implemented in SRAM and a small Content Ad-
dressable Memory (CAM) for row tags, totaling just 3.2 KB
per bank. This low on-chip memory supports a Rowhammer
threshold of 125 with only ≈ 2.5% footprint and very fast
lookups, at the cost of approximate counting and the silicon
complexity of a CAM. Finally, our proposal LAD-IXoC de-
fines an upper bound of 158 KB per bank for the counters
(one byte per row) if every row were to pass the xor prefilter.
In practice, the XF rejects the vast majority of benign rows,
so the average memory usage is far lower, while the combined
XF + CMS structure still enforces a threshold of 80 without
resorting to fixed priority evictions. This dynamic filtering
minimizes the likelihood that a malicious row simply slips
through an eviction tail, making LAD-IXoC robust even under
heavy loads.

V. ANALYSIS AND CONCLUSIONS

Our two-stage detection framework with an XF and a CMS
enables the use of similar, per-tuple thresholds to competing
schemes while still maintaining undetected attack probabilities
below 0.4% for all tested configurations.

By combining lightweight filtering and frequency counting,
our system not only flags anomalous execution loops but also
provides an on-the-fly estimate of loop frequency. This dual
functionality is critical to detect benign “hot loops” (e.g., tight
kernel routines) and attack-induced repetition, which many
single-stage filters cannot make without significant memory
overhead or off-chip support.

A major advantage of our approach is that no per-attack
metadata (e.g., trace logs or instruction histories) needs to
be maintained. All relevant information, fingerprints, and
frequency counts are stored implicitly within the XF/CMS
structure itself. This yields an extremely compact footprint,
easily implementable alongside existing DRAM controllers
without requiring additional on-chip SRAM blocks for logs
or micro-architectural buffers.

Our detection module can seamlessly integrate with cur-
rent mitigation techniques (e.g., loop throttling, row hammer
refresh protocols, or speculative-execution fences). Once an
anomalous loop is signaled, higher-level firmware or OS
routines can apply targeted countermeasures, such as dynamic
instruction scheduling, cache invalidation, or selective mem-
ory refresh, to mitigate the attack before data corruption or
privilege escalation occurs.

Overall, the proposed two-stage architecture offers a practi-
cal balance between detection accuracy, resource efficiency,
and operational simplicity. It outperforms many threshold-
based designs using only three memory accesses (and thus
faster reaction times) without incurring a prohibitive rate of
undetected attacks. Future work will implement our solution
in hardware prototypes to validate performance and power
overhead.
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