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 A B S T R A C T

Understanding device mobility in wireless networks is essential for multiple purposes: optimizing space usage, 
managing intelligent buildings, or improving network efficiency. However, the use of real mobility data 
raises significant privacy concerns. In this work, we propose DiWi (a Digital twin for Wireless mobility), 
a Transformer-based model to generate spatiotemporal mobility traces that mimic real-life behavior while 
preserving user privacy. We validate the utility of DiWi by comparing real and synthetic datasets, and by 
demonstrating its usefulness in a series of use cases related to mobility management, resource consumption, 
and privacy enhancements. We also confirm that DiWi is secure by evaluating empirical privacy metrics, such 
as, direct leakage, similarity searches, or membership inference. Our results illustrate that DiWi serves to 
generate realistic and useful mobility patterns without exposing identifiable user traces, making it a valuable 
tool for privacy-preserving mobility analysis. Furthermore, we investigate how enforcing differential privacy 
affects the generative performance of the model.
1. Introduction

Wireless networks provide seamless connectivity by eliminating the 
need for physical connections, enabling broad access to digital services. 
As devices move through the network, they generate connectivity 
patterns that represent traces of their activity [1]. These traces provide 
insights into aspects such as high-traffic areas, peak activity times, and 
typical usage patterns [2]. These insights into device behavior help 
operators allocate resources more efficiently, reduce energy use with 
adaptive management strategies [3], and improve systems like heating 
optimization [4].

However, the pervasive use of wireless networks comes with sig-
nificant privacy concerns. Effective network management, optimiza-
tion, and security often require extensive monitoring, which involves 
collecting sensitive data about users’ mobility, device activity, and 
personal habits. If unauthorized entities access this data, it could be 
exploited in a privacy-invasive manner, highlighting the need for strong 
privacy-preserving techniques in data analysis and synthetic trace gen-
eration [5].

To address these concerns, it is essential to implement robust tech-
niques that secure and protect sensitive mobility data even when en-
cryption is breached or data is leaked. Methods such as pseudoanonymiza-
tion are known to only mildly solve this issue as demonstrated in [6], 
where 93% of the users were re-identified even when this technique is 
applied.

∗ Corresponding author.
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In contrast to pseudoanonymization, synthetic data offers a practical 
way to protect user privacy while preserving the statistical properties 
needed for analysis [7]. By generating datasets that mimic real data 
without directly linking to individual users, the risk of re-identification 
is reduced. This allows researchers and organizations to study patterns, 
train machine learning models, and develop solutions without exposing 
sensitive information. One potential clear advantage of synthetic data 
is that it does not have a one-to-one correspondence with real devices 
(unlike some pseudoanonymization techniques), but its utility is at 
question since it may not capture real-life dynamics.

In this work, we propose DiWi, a transformer-based Digital twin 
for Wireless mobility. DiWi generates synthetic data that captures the 
features of real-life device mobility in wireless networks, supporting the 
development of relevant use cases without leaking personal data. More 
specifically, the key contributions of this paper are:

• Transformer-based mobility modeling: We design and imple-
ment a Transformer-based model to predict device connectivity 
sequences in a campus WLAN. By decomposing temporal in-
formation during encoding, the model reduces the number of 
parameters while improving generalization, enabling it to gener-
ate realistic spatiotemporal traces. The model is trained on real 
traces collected from a campus environment with thousands of de-
vices, users, and access points, ensuring accurate and meaningful 
results.
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• Applications in network and space management: We explore 
the model’s applicability in key use cases such as optimizing space 
usage, managing intelligent buildings, predicting user occupancy 
for energy-efficient Heating, Ventilation, and Air Conditioning 
(HVAC) systems, and forecasting mobility for network manage-
ment. Additionally, we demonstrate its utility in developing and 
evaluating privacy metrics for wireless networks.

• Privacy-preserving data generation: To ensure the generated 
data does not compromise user privacy, we assess risks such 
as direct leakage, similarity searches, and membership inference 
attacks [5]. Our analysis confirms that the model effectively 
captures mobility patterns while preventing the exposure of iden-
tifiable user traces. Building on this, we further explore the trade-
off between utility and privacy by integrating a Differentially 
Private mechanism into the model training process.

The rest of the paper is organized as follows: In Section 2, we 
describe DiWi, providing an overview of the system, the dataset used, 
the sequence encoding, and the modeling and training stages. We 
evaluate DiWi in Section 3, both by analyzing device and Access Points 
(AP) statistics, and by exploring its applicability in key use cases related 
to sustainability, mobility management, and understanding anonymity 
schemes. We assess DiWi’s privacy features in Section 4 by examining 
exact matches, dataset closeness, and membership inference risks. Fi-
nally, we review the related work in Section 5 and conclude the paper 
in Section 6.

2. DiWi: a digital twin for wireless mobility

Here we describe DiWi, a Transformer-based model designed for 
predicting the next location of a user and generating synthetic mobility 
traces. We detail its key components and their roles in processing device 
connectivity sequences. Specifically, we explain how the model encodes 
spatial and temporal information, integrates these representations, and 
leverages a Transformer framework to predict the next connectivity 
state.

2.1. Dataset

Unless otherwise noted, we rely on a dataset of users connected 
to the WiFi network at in one Campus of Universidad Carlos III de 
Madrid (UC3M).1 The network is provided by 279 APs distributed 
across seven buildings. These buildings, most with at least three floors, 
serve various purposes such as classrooms, cafeterias, and study areas. 
Each AP provides coverage for approximately 100 𝑚2, while the entire 
campus spans 1.6 million 𝑚2 and supports a community of around 
10,000 individuals. The dataset spans four weeks of connectivity logs, 
with no holidays or special events in between.

We are provided the data by system administrators, which rely on 
a system that logs device connections and discretizes them every 5 min 
intervals,2 according to the following rules:

• If a device remained connected to a single AP during the interval, 
that AP was recorded.

• If the device connected to multiple APs, the AP where it spent the 
majority of time was assigned.

• If no connection was detected, the device was considered dis-
connected, and we introduce an artificial OUT status to represent 
periods without connectivity.

1 https://www.uc3m.es/life-on-campus/campuses-plans/leganes
2 While this temporal resolution could be a limitation in high-mobility 

scenarios, our results show that it is sufficient to accurately capture typical 
trends in a campus WLAN, as demonstrated later.
2 
Before processing the data, we consulted the Data Protection Offi-
cer (DPO) at UC3M to ensure full compliance with ethical and legal 
requirements. The dataset was pseudoanonymized using MD5 hashing 
of user identifiers and MAC addresses. Access to the data was restricted 
to secure servers with user-based authentication and activity logs. 
In addition, the university provided public notice of data collection 
practices, including the right to access, modify, or delete personal 
data. Our team also formally committed not to attempt any form of 
re-identification.

To ensure that each device’s behavior is accurately captured in the 
dataset, we examined the potential impact of MAC address random-
ization on data quality. In our WLAN deployment, all access points 
broadcast the same SSID, which limits the effect of MAC randomization, 
as most modern devices use SSID-specific randomization, meaning they 
keep the same address when connecting to the same SSID [8]. We 
specifically searched for more aggressive forms of randomization that 
would produce different identifiers each day, did not observe them: the 
number of addresses per user remained stable during the whole period, 
which is consistent with the lack of aggressive randomization.

2.2. Model overview

The architecture of DiWi is illustrated in Fig.  1, which summarizes 
the entire workflow (represented from top to bottom). Starting from 
the dataset, the system sequentially encodes spatial and temporal com-
ponents of device connectivity traces (top part of the figure). These 
components are then merged into a unified spatiotemporal represen-
tation, capturing the full behavior of each device. Finally, the model 
predicts the next connectivity state: whether the device will remain 
connected to the same AP, transition to a different AP, or disconnect 
entirely (OUT). The training process is designed to optimize these 
predictions, ensuring accurate modeling of mobility behavior across the 
network.

2.3. Sequence encoder

We restrict ourselves to the interval between 6:00 AM and 10:00 
PM. Given the 5 min discretization, a trace consists of 192 tokens 
(i.e., 12 per hour). The model’s vocabulary () includes the 279 APs 
plus the OUT token, and therefore it captures all possible device loca-
tions, including disconnections.

To model device connectivity, we encode both spatial and temporal 
information into a unified vector representation. This combined encod-
ing allows the model to capture the full context of a device’s mobility, 
i.e., its location within the network and the timestamp.

For spatial encoding, we use an AP embedding matrix 𝑊𝐴𝑃 , 
which maps one-hot vectors representing possible connectivity states—
either a specific AP or the OUT state for disconnections—into high-
dimensional vectors of size 𝑑. This process generates spatial embed-
dings 𝐄𝐀𝐏, as shown in Eq. (1), which captures the spatial properties 
of each connection: 
𝐄𝐀𝐏 = 𝑊𝐴𝑃 ⋅ 𝐀𝐏𝑖 (Embedding for input𝐀𝐏) (1)

For the temporal encoding, we use absolute positional embeddings 
to represent the exact timestamp of each connection. Unlike relative 
positional embeddings commonly used in natural language processing 
(e.g., to preserve word order in text), absolute embeddings are better 
suited for mobility data, since the absolute position of a token within 
the timeline provides critical contextual information. For example, 
being disconnected at 7:00 AM (typically before a user arrives) conveys 
different behavior than being disconnected at 2:00 PM (a common 
lunch hour in Spain). To encode absolute time, we decompose it into 
two components: hours (𝐻) and minutes (𝑀). Each component is 
mapped into high-dimensional space using its own embedding matrix 
as follows:

https://www.uc3m.es/life-on-campus/campuses-plans/leganes
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Fig. 1. Architecture of DiWi. The orange box shows the decomposed encoding and creation of the joint spatiotemporal representation, the red box represents the transformer 
blocks and their computations, and the green box indicates the prediction of the next AP and the inference process. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
• The hour embedding 𝐄𝐇 is computed using 𝑊𝐻 , an embedding 
matrix of shape (𝑁𝐻 × 𝑑), where 𝑁𝐻  represents the number of 
possible hour values: 

𝐄𝐇 = 𝑊𝐻 ⋅𝐇𝑖 (Embedding for input𝐇) (2)

• The minute embedding 𝐄𝐌 is computed using 𝑊𝑀 , an embedding 
matrix of shape (𝑁𝑀 × 𝑑), where 𝑁𝑀  represents the number of 
possible minute values: 

𝐄𝐌 = 𝑊𝑀 ⋅𝐌𝑖 (Embedding for input𝐌) (3)

The final temporal embedding at each time step is obtained by 
adding both embeddings (𝐄𝐇 + 𝐄𝐌). This segmented approach to tem-
poral encoding is more efficient than using a single absolute positional 
encoding matrix of size 𝐿 × 𝑑, where 𝐿 = 192 represents the total 
number of time steps in a trace. As we will further analyze in Section 3, 
by breaking time into smaller components (hours and minutes), we sig-
nificantly reduce the number of parameters required, which improves 
memory efficiency while preserving the semantic meaning of absolute 
time, making the model both scalable and practical for processing large 
mobility traces.

Together, the spatial embedding 𝐄𝐀𝐏 and temporal embeddings 
(𝐄𝐇+𝐄𝐌) form the joint spatiotemporal representation of device traces 
𝐡(𝐥), where the super index represents the layer 𝑙 of the model.
3 
2.4. Sequence modeling

After the joint spatiotemporal vector 𝐡(𝑙−1) is composed, it is pro-
cessed through a series of Transformer blocks designed to capture 
dependencies and relationships between connectivity states. Each block 
includes two residual connections: one around the self-attention sub-
layer and another around the position-wise feed-forward sub-layer, 
which together facilitate gradient flow through deep networks.

The Transformer block begins by normalizing the embeddings from 
the previous layer, denoted by 𝐡(𝑙−1) to improve training stability and 
gradient flow [9]. The normalized input is then used to compute self-
attention by projecting the normalized input embeddings LN(𝐡(𝑙−1)) into 
query 𝐐, key 𝐊, and value 𝐕 vectors. A scaled dot-product operation 
between 𝐐 and 𝐊 captures relationships between elements in the 
sequence. These scores are then normalized using a softmax function 
and applied to 𝐕, producing the attention output 𝐇attn. To retain the 
original contextual information, the attention output is added back 
to the input 𝐡(𝑙−1), and the result is passed through a normalization 
layer, forming the final output of the attention sub-layer. This process 
is summarized by Eq. (4)

𝐇attn = 𝑓attn
(

LN
(

ℎ(𝑙)
))

, 𝐡(𝑙) = 𝐡(𝑙−1) + 𝐇attn (4)

where 𝑓attn represents the self-attention mechanism applied to the 
combined embeddings of access points, hours, and minutes, and LN
denotes the Layer Normalization operation applied after each sub-layer 
to stabilize training and improve convergence [10].
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The output from the attention mechanism, 𝐡(𝐥), is normalized and 
passed through a two-layer feed-forward network with a GELU non-
linearity. This network consists of two linear transformations: the first, 
parameterized by 𝐖↑, expands the dimensionality of the represen-
tation, while the second, 𝐖↓, reduces it back to its original size. 
The resulting output is added back to the input of the sub-layer and 
re-normalized, completing the Transformer block. 
𝐡′ = 𝐖↓ GELU

(

𝐖↑ LN
(

𝐡(𝑙)
))

, 𝐡(𝑙) = 𝐡(𝑙) + 𝐡′ (5)

Finally, the output of the last Transformer block, 𝐡(𝐿), is projected 
to token logits and normalized using a softmax function to produce a 
probability distribution over the model’s vocabulary  . This distribu-
tion represents the likelihood of each possible next connection state 
(e.g., an access point or disconnection), and the prediction process is 
formalized in Eq.  (6): 
𝐏next = sof tmax

(

𝐡(𝑁𝑙𝑎𝑦𝑒𝑟𝑠)
)

(6)

Using the probability distribution defined in Eq.  (6), we generate 
synthetic datasets sequentially. At each step, the model predicts the 
next AP by sampling from the probabilities calculated based on the 
sequence of tokens observed so far. This approach assumes conditional 
independence, meaning that each prediction depends solely on the 
context provided by the preceding sequence.

2.5. Training

The model is trained in a supervised manner using real device con-
nectivity traces. As we previously mentioned, each trace contains 192 
tokens per day the device was connected to the network, corresponding 
to 5 min intervals over a full 16-hour day. To enable the model to 
capture longer temporal dependencies and better predict multi-day 
behavior, we use a fixed context length of 250 tokens during training. 
If a device appeared on the network for only one day, we extend its 
trace by padding with the special OUT token to reach this length. Each 
training sample consists of 250 input tokens, and the expected output is 
the sequence shifted by one step, allowing the model to learn temporal 
dependencies and predict the next connection state.

The hyperparameters were chosen following the principles outlined 
in [11], which analyze the relationship between model performance 
and hyperparameter choices. These parameters are: the embedding 
dimension (𝑑 = 384), number of transformer layers (6), attention heads 
(6), and dropout rate (0,15), to balance performance and generaliza-
tion. We use a cross-entropy loss function to compare predictions with 
actual states, optimizing the model with the Adam optimizer (𝛽1 =
0.9, 𝛽2 = 0.999) and a learning rate of 2 ⋅10−4. Training runs for up to 50 
epochs, with early stopping if validation loss stagnates for 5 consecutive 
epochs to prevent overfitting. We also found that a batch size of 64 
ensures stable and efficient convergence.

Table  1 presents the hyperparameters of the models used to compare 
against DiWi. The first part summarizes architectural details of Long 
Short-Term Memory (LSTM), GPT2, and DiWi, including embedding 
dimension 𝑑, number of layers, number of attention heads (for trans-
formers), and approximate total parameter count. The second part 
breaks down the parameter composition of GPT2 and DiWi, showing 
how both models share the same Transformer architecture. Despite 
having a similar total number of parameters, DiWi achieves greater ef-
ficiency through a more compact and structured input representation—
using fewer tokens and a smaller embedding table—resulting in lower 
memory usage and faster computation.

3. Performance evaluation

In this section, we evaluate DiWi’s ability to generate realistic data 
by comparing the statistical relationships in the synthetic dataset to 
those in the real dataset. This analysis ensures that the model not only 
generates plausible individual samples but also captures the broader 
patterns and dependencies found in the original data. We also highlight 
potential applications of DiWi, particularly in sustainability and user 
behavior analysis within wireless networks.
4 
3.1. Prediction of next AP

We first evaluate DiWi’s next-token prediction accuracy for a fixed 
input length. Because every token represents a five-minute interval, 
an input of one token corresponds to five minutes of past activity, 
whereas 168 tokens span fourteen hours. For the prediction test we fix 
the context window to the last 12 h of activity, which corresponds to 
144 tokens at five-minute resolution.

We evaluate accuracy on a set of real connectivity traces and 
compare our model against two baselines—(i) an LSTM and (ii) a 
standard GPT-2 without our temporal encoding—both of which support 
next-token prediction and full trace generation, allowing for a fair 
comparison across the two core tasks.

• LSTM: A standard LSTM network serves as a strong recurrent 
baseline due to its ability to capture temporal dependencies in 
sequential data.

• GPT-2: We include a GPT-2 model with standard sinusoidal po-
sitional embeddings [10] to isolate the contribution of our pro-
posed temporal encoding 2.3. It shares the same architecture 
(aside from the encoding) and training setup as our model.

We provide in Table  2 the performance of each model in the 
considered campus (first column). To illustrate the ability to generalize 
of DiWi, we also consider a second campus of the University, consisting 
in 434 APs (second column) and around 25,000 individuals. According 
to the results, DiWi consistently outperforms all baselines in both cam-
puses. Although our evaluation was limited to these both environments, 
we see that DiWi outperforms both baselines.

The results in Table  2 show that DiWi achieves the highest accuracy 
in both environments, outperforming all other models. We attribute 
this improvement to the richer semantic information captured by the 
decomposed temporal embeddings. This is particularly evident when 
comparing GPT2 and DiWi: the two share the same architecture, but 
only DiWi includes explicit temporal decomposition into hours and 
minutes. This design allows the model to learn that certain time combi-
nations carry similar meanings — for example, 9:55 AM and 10:00 AM 
may correspond to transitions between classes or breaks, and thus 
share behavioral patterns. By embedding hours and minutes separately, 
DiWi can better generalize across such patterns, recognizing temporal 
similarities that GPT2, with a flat encoding, cannot easily capture.

In the following sections, we compare key statistics between a 
sample of real device traces from the test dataset in Campus 1 and 
synthetic traces generated by our model. Each synthetic trace starts 
with a token drawn from the distribution of first states seen in the 
real data—so about 82% of traces begin in OUT—rather than forcing 
every trace to start the same way. From that seed the model produces 
a probability vector for the next state; we sample a token from it, slide 
the context window to keep only the most recent tokens, and repeat 
the process. Generation stops when the trace reaches a length of 192 
tokens (one day from 6:00 AM to 10:00 PM).

3.2. Device and AP statistics

Here we compare different statistics from the data generated by 
DiWi and the real dataset. We start by analyzing the number of unique 
APs a device connects to in a single day, which is illustrated in Fig.  2(a). 
The figure presents the Empirical Cumulative Distribution Function 
(ECDF) of this metric, providing insights into mobility patterns. The 
blue line represents the data from the real dataset, while the dashed 
orange line corresponds to DiWi. The results confirm the similarity of 
the statistics from both datasets, with 80% of devices connecting to 
fewer than 10 unique APs per day (some form of localized mobility, 
where users connect to one or two buildings at most). We also compare 
both distributions using a Q-Q plot (subplot within Fig.  2(a)) that 
illustrates a strong alignment along the reference line (red dashed line), 
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Table 1
Best hyperparameters found for DiWi, and the baseline models GPT2 and LSTM. Token embedding sizes are computed based on vocabulary 
size and embedding dimension. Total tokens embedded refers to the sum of token categories passed through the input layer. For LSTM, the 
‘‘𝑁ℎ𝑒𝑎𝑑𝑠 ’’ column refers to the hidden dimension.

 Model d Nlayers Nheads 
 LSTM 384 6 256  
 GPT2 384 6 6  
 DiWi 384 6 6  

 

 Model GPT2 DiWi  
 Embedding Size (|| +𝑁context) × 𝑑 (|| +𝑁H +𝑁M) × 𝑑 
 Transformer Blocks 𝑁layers = 6
  Attention Block Params 4 × 𝑑2

  Feedforward Block Params 2 × 𝑑 × 3𝑑
  LayerNorm Params 4 × 𝑑
 Total Tokens ∼ 10.9M ∼ 10.8M  
Table 2
Model accuracy when predicting the next connectivity state.
 Model Campus 1 Campus 2 
 Acc. [%] Acc. [%]  
 LSTM Network 91.2 89.8  
 GPT-2 91.8 91.9  
 DiWi 92.3 92.4  

Table 3
Kullback–Leibler (KL) Divergence between the real dataset and the generated with the 
LSTM, GPT2, and DiWi.
 Metric LSTM GPT2 DiWi  
 N◦ visited APs 0.26 0.13 0.015 
 AP rank 0.083 0.076 0.036 
 Time spent 0.62 0.65 0.017 
 Time of arrival 0.078 0.059 0.032 

indicating that the synthetic dataset closely replicates the mobility 
patterns of the real data 𝑅2 = 0.98.

Next, we analyze how many devices connect to a given AP. More 
specifically, we compute the rank of the APs for both datasets, and 
compare them in Fig.  2(b). The figure displays the proportion of devices 
connected to each AP, ranked from most visited to least. As in the 
previous case, we depict in blue the real dataset and in orange DiWi. 
The results reveal that for both datasets a small number of APs handle 
the majority of connections, indicating that activity is clustered in key 
locations (e.g., building halls, the library, and cafeterias). Both the real 
and synthetic datasets exhibit the same trend, the largest difference 
is less than 1%, demonstrating that the synthetic dataset effectively 
captures key mobility behaviors.

Next, we analyze temporal patterns. To this aim, we compare for 
each dataset the time of arrival and the time spent in the network 
in Fig.  2(c) and Fig.  2(d), respectively. The figures confirm close 
alignment between the real dataset and DiWi, while revealing both 
short-term interactions, such as brief check-ins, and extended periods of 
connectivity, which could correspond to activities like attending classes 
or studying in the library.

To quantify the similarity between the statistics from DiWi and the 
real dataset, we use the Kullback–Leibler (KL) divergence [12], where 
lower values indicate a closer match between distributions. The results 
from these comparisons are summarized in Table  3. The KL divergence 
values demonstrate that the statistics from DiWi closely align with the 
real dataset across spatial and temporal dimensions. As a reference, we 
also provide in the table the KL divergence values corresponding to the 
baseline models.

Interestingly, Table  3 shows that although the accuracy values 
in Table  2 are similar between DiWi and the baseline models, the 
KLD between the real and generated data reveals much larger dif-
ferences. Specifically, DiWi consistently outperforms both LSTM and 
GPT-2 across all statistics. This highlights DiWi’s ability to capture the 
underlying dynamics of user mobility on campus, not just the next 
connection prediction.

These results validate the model’s ability to generate realistic mo-
bility traces that preserve key structural and behavioral patterns ob-
served in real-world data. We next present a series of scenarios to 
5 
Fig. 2. Trace mobility statistics comparing the synthetic and real traces. (a) Number 
of APs visited during a day by each device, (b) Ranking of most visited APs, (c) 
Distribution of time of arrival, and (d) Time spent connected to the network.

illustrate how DiWi can support the design of novel network manage-
ment solutions, without incurring in privacy risks (as demonstrated in 
Section 4).

3.3. Scenario1: Sustainability

In this section, we show how synthetic traces generated by DiWi can 
be used to analyze space occupancy patterns, like student arrival times 
and duration of stay, to help optimize HVAC schedules [13], reduce 
energy use, and improve building management while protecting pri-
vacy. Research [14,15] has shown that HVAC systems can save energy 
by adjusting settings based on occupancy. While traditional methods, 
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Fig. 3. Number of devices connected during a day. (a) Overall occupancy, (b) 
Occupancy in Building 1, (c) Occupancy in Building 5.

such as camera-based systems [14], pose privacy risks, synthetic traces 
simulate device mobility without linking real and generated data (see 
Section 4), providing a safer, privacy-friendly alternative.

To validate the utility of DiWi, we compare its campus space occu-
pancy with that of the real dataset. More specifically, we depict in Fig. 
3(a) the total number of connected devices in the campus every 5 min, 
with the blue line representing real data and the orange dashed line 
corresponding to DiWi. The figure confirms that DiWi generated dataset 
accurately captures overall trends, such as minimal network activity 
at 6:00 AM, peak activity around 9:00 AM, and a gradual decrease in 
occupation from 5:00 PM.

In addition to per-Campus occupation, we also analyze the occupa-
tion in a couple of representative buildings: a classroom building in Fig. 
3(b)) and a cafeteria building in Fig.  3(c). According to the results, both 
datasets expose similar activity patterns, with sharp peaks at the start 
times of lectures in the case of the classroom building, and at times of 
coffee breaks and lunch times in the case of the cafeteria.

These results confirm that DiWi can be used to design intelligent 
HVAC systems without compromising user privacy. For instance, it is 
clear that the system could be switched off at 7:00 AM, as fewer than 
5% of devices remain connected across the university at that time. 
Furthermore, more sophisticated approaches could be designed, with 
a proper isolation of zones, e.g., the HVAC system in the cafeteria 
between 3:00 PM and 5:00 PM could be switched to a low power mode 
(the actual design of these policies is outside the scope of this work).

3.4. Scenario 2: Mobility management

Here we evaluate DiWi’s ability to support the design of advanced 
mobility management schemes, i.e. mechanisms forecasting the move-
ment of devices, to support the design of better mobility schemes or 
the design of infrastructure on demand approaches by activating APs 
as needed. More specifically, here we focus on the ability of DiWi to 
analyze the connection history of a device, which we refer to as context, 
and then forecast its next connection point. To assess the model’s 
predictive performance, we evaluate how its accuracy varies with the 
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Fig. 4. Accuracy as function of the context_length.

amount of context provided for inference. To compute this, we first 
select the context_length used by the model for inference. Then, 
we sample a sequence of the chosen length for each device and use it 
to predict the next connection. This process is repeated across different 
context lengths, allowing us to assess how the model performs under 
varying amounts of historical data.

We represent in Fig.  4 the accuracy as a function of context_
length, measured in hours, where each hour corresponds to 12 tokens 
(with each token representing a 5 min interval). The shaded regions 
around the curve represent twice the standard deviation (2𝜎), indicat-
ing the variability in accuracy across samples. The results illustrate 
that accuracy improves as context length increases, but gains level 
off beyond 2 h. This suggests that while additional context initially 
enhances predictions, there is a point of diminishing returns. We note 
that there is a slight increase in accuracy after 10 h of context, which 
we conjecture that may be caused by the ability of DiWi to leverage 
context from the previous day to predict the behavior on a given next 
day.

3.5. Scenario 3: Anonymity schemes

In this section we describe how DiWi  can support the design of 
privacy-preserving schemes. This is motivated by previous studies, such 
as [6,16], which have identified some variables related to network 
activity that can be used to unequivocally identify a device (without 
using any device ID). In this section, we briefly introduce two different 
metrics regarding the identifiability of a device, and illustrate how the 
synthetic trace provided by DiWi shares the same results as the real-life 
dataset.

First, we define spatiotemporal unicity as the number of randomly 
chosen spatiotemporal points in a device’s trace that make it uniquely 
identifiable. Following this definition, the uniqueness of a dataset is the 
average unicity across all devices in that dataset, which summarizes 
how identifiable the devices are. We represent in Fig.  5(a) the unicity 
for an increasing number of randomly chosen spatiotemporal points. 
According to the figures, both the real dataset and DiWi produce vary 
similar results. With four spatiotemporal points, 93% of devices in the 
real dataset are unique, compared to 91% in the synthetic dataset. 
These results confirm that DiWi preserves the privacy dynamics of the 
real data, making it a useful tool for evaluating privacy risks in mobility 
networks and designing new Randomized and Changing MAC (RCM) 
schemes.

Second, we can also defined a device’s uniqueness based on its most 
frequently visited APs. To do this, we create a fingerprint for each 
device using the list of APs where it spends most time. Following this, 
a device is considered unique if no other device has the same list of 
top 𝑝 APs in that order. We represent in Fig.  5(b) the relative number 
of unique devices in a trace as 𝑝 increases. As in the previous case, 
both the real dataset and DiWi follow a similar pattern, e.g., with 
fingerprints of 4 APs, 77% of devices are unique in the real dataset, 
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Fig. 5. Metrics for evaluating the uniqueness of device mobility patterns.

compared to 81% in the synthetic dataset. Beyond 𝑝 = 5, uniqueness 
levels off, suggesting that adding more APs to the fingerprint does not 
significantly increase a device’s distinctiveness.

4. Privacy assessment

In this section, we assess the potential risks of real-life data from 
the use of DiWi. This is essential to confirm that the generated data 
has the ability to mimic mobility patterns (as illustrated above) while 
preventing the exposure of sensitive information, making it suitable for 
the scenarios discussed in Section 3. Our assessment is two-fold: first, 
we perform an empirical evaluation of the privacy risks, which serves to 
provide some context about the small risks from using DiWi (but does 
not provide formal guarantees), and second, we illustrate how DiWi can 
be extended to support formal privacy guarantees.

4.1. Exact matches

First, we assess the risk of the model leaking complete real traces, 
i.e., the possibility of generating a trace that is identical to one from 
the training dataset. This scenario represents a significant concern as it 
would indicate two problems: (1) the model is overfitting and failing 
to generalize, and (2) the behavior of a real device is being exposed in 
the synthetic dataset. Such outcomes would compromise the purpose 
of using synthetic data by diminishing its privacy-preserving benefits.

To assess this risk, we analyze the trace generation process de-
scribed in Section 2.4, where traces are generated sequentially based 
on the model’s learned probabilities. Assuming independence, the like-
lihood of reproducing a training trace is computed as the product of 
probabilities at each step (or equivalently, the sum of log probabilities). 
During synthetic dataset generation, we typically select the most likely 
token at each step. However, to evaluate the probability of reproducing 
a training trace, we take a different approach: instead of selecting the 
most likely AP, we use the actual AP observed in the training trace. 
By summing the log probabilities of these events across the sequence, 
we estimate the likelihood of generating an exact replica of a training 
trace.

Fig.  6 presents the distribution of log probabilities for generating 
traces from the training set (blue) and the synthetic dataset (orange). 
The 𝑥-axis represents the log probability, while the 𝑦-axis shows the 
percentage of training traces with a given probability. The results 
indicate that the average probability of exactly reproducing a training 
trace is approximately 10−120. This suggests that, on average, the model 
would need to generate 10120 traces to replicate a single training trace, 
reinforcing that the model generalizes patterns rather than memorizing 
them.

The orange distribution represents the probability of generating 
traces from the synthetic dataset used in this study. While some syn-
thetic traces exhibit probability values close to those in the training set, 
the overlap remains limited. The overall probability of generating new, 
distinct traces remains dominant, indicating that the model primarily 
creates new patterns rather than reproducing previously seen data.

Interestingly, some traces are more likely to be replicated than 
others. This variation, discussed further in the next section, may result 
7 
Fig. 6. Distribution of the likelihood of generating a trace.

from certain AP sequences appearing more frequently in the training 
dataset. While this imbalance reflects the real-world distribution of user 
activity and preferences on campus, it is also necessary for the model 
to accurately capture device behavior. By representing these natural 
patterns, the synthetic dataset maintains the fidelity of user behavior 
without directly exposing sensitive information.

4.2. Closeness between datasets

Above we have analyzed the probability of the DiWi generating an 
exact replica of a real device’s trace, which is practically negligible. 
However, the model may still produce synthetic traces that closely 
resemble real ones. For instance, consider two devices with similar 
mobility patterns: both connect to a sequence of the same APs but differ 
at one or two points. While these traces are not identical, their strong 
similarities may result in the synthetic data inadvertently revealing 
aspects of the real device’s mobility pattern.

To assess this risk, we adapt inter- and intra-similarity analysis [12], 
originally used for benchmarking dataset quality, to evaluate privacy 
leakage. Specifically, we measure the ‘‘closeness’’ between real-to-real 
traces and real-to-synthetic traces. By comparing the inter- and intra-
similarity scores between pairs of real devices and pairs of real and 
synthetic devices, we evaluate whether the synthetic data retains iden-
tifiable patterns from the real data. If the synthetic traces are too similar 
to the real ones, privacy risks may emerge. Conversely, traces that are 
too dissimilar could make it obvious which traces are synthetic. Striking 
a balance ensures that the synthetic data preserves the utility of the real 
data without compromising privacy.

To quantify similarity, we use the Hamming distance3 between two 
traces. This metric counts the number of matching APs in the same 
order, excluding instances of the OUT state. This exclusion is justified 
because the OUT state does not provide meaningful information about 
a device’s mobility. Using this metric, we calculate the percentage of a 
real trace that is ‘‘replicated’’ in a synthetic trace, providing a concrete 
measure of how much real mobility data is reflected in the synthetic 
dataset.

Fig.  7 presents the ECDF of the proportion of training traces that 
overlap with other training traces and with generated traces. In both 
cases, 90% of training traces intersect with at most 20% of others, 
indicating that generated traces are as similar to real traces as real 
traces are to each other. The QQ plot further confirms a strong align-
ment between the distributions, suggesting that the generated traces 
maintain a balance between similarity and diversity, reducing the risk 
of privacy breaches.

As noted earlier, some mobility patterns are more unique than 
others. These common movement sequences are not a major concern 
since they are shared by many traces, making reidentification difficult. 

3 Technically, this is more of a similarity metric than a true distance 
measure. |𝐿| −𝐻(𝐿)
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Fig. 7. Hamming Distance between traces.

The real issue is the unique sequences in the generated traces that 
match specific real devices, posing a privacy risk.

To assess this risk, we analyze the overlap between generated traces 
and the training set. For each overlapping subsequence (Fig.  7), we 
determine how many device traces from the training set contain that 
same subsequence. This allows us to assess whether the overlap is 
distributed across multiple training devices, or if it is limited to a single 
user, which could indicate potential leakage of identifying patterns.

Our analysis shows that only 2% of exposed training patterns 
uniquely identify a single device. This suggests that while some subse-
quences are exposed, they are usually shared among multiple devices, 
keeping the risk of identifiability low.

4.3. Membership inference

We now examine a scenario in which an attacker has partial access 
to real device traces and the ability to query the model to generate 
synthetic traces.

In this attack, the goal is to train a classifier that determines whether 
a given trace comes from the real training dataset (𝐷𝑡𝑟) or the synthetic 
dataset (𝐷𝑠𝑦𝑛). The attacker has access to both synthetic traces and a 
portion of the training data but relies solely on the information within 
the traces to distinguish between them.

To make this distinction, the attacker trains a classifier to assign 
a label of 1 to traces from the training set and 0 to synthetic traces. 
The classification is based on device behavior profiles, which include 
features such as time of arrival, duration of connection, most frequently 
used AP, and the number of APs visited.

As depicted in Fig.  8(a), the attacker first accesses real traces from 
DiWi’s training dataset, constructs profiles for these traces, and assigns 
them the label 1. The attacker then queries the model to generate 
synthetic traces, computes profiles for these traces, and assigns them 
the label 0. Using this labeled dataset, the attacker trains a classifier to 
conduct the membership inference attack. By employing an explainable 
model, the attacker can identify which features the model uses to make 
its decisions, uncovering correlations and patterns that may reveal 
potential vulnerabilities in the synthetic dataset.

In Fig.  8(b), we present the results for decision trees and random 
forests. The observed accuracies are 52% and 56%, respectively, which 
are only slightly better than random guessing. In a binary classification 
task like distinguishing between real and synthetic traces, a random 
classifier would achieve approximately 50% accuracy. The minimal 
improvement over this baseline suggests that the models struggle to 
identify meaningful patterns or signals to reliably distinguish between 
the two classes. This indicates that the synthetic dataset closely repli-
cates the distribution of connectivity patterns observed in the real 
dataset.

Fig.  8(c) presents the feature importance of the Random Forest 
model used for the membership inference attack, which determines 
whether a given trace was part of the training dataset. The results 
show that Most Used AP is the most influential feature, indicating 
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Fig. 8. Results of the Membership Inference Attack (MIA). (a) MIA schema, (b) 
Accuracy of the model, (c) Feature importance.

that access point usage patterns contribute to distinguishing between 
real (training) and synthetic traces. However, its importance is not 
significantly higher than other features, and the overall distribution of 
feature importance is relatively uniform.

These results suggest that the membership inference attack struggles 
to distinguish between real and synthetic traces, with accuracy barely 
exceeding random guessing. The lack of a strong signal in feature 
importance further indicates that the generated dataset closely mirrors 
real connectivity patterns without exposing identifiable information. 
This reinforces the idea that DiWi effectively preserves privacy while 
maintaining realistic mobility patterns.

4.4. Formal privacy guarantees

So far, we have assessed the privacy implications of our generator 
through empirical evaluations, measuring how likely it is to produce 
traces that resemble those seen during training. While these analyses 
provide useful indicators of re-identification risk, they do not offer for-
mal guarantees. In this section, we address this limitation by exploring 
the integration of differential privacy (DP) into the training process. We 
analyze how applying DP affects the behavioral fidelity of the generated 
traces, and quantify the trade-off between privacy strength and data 
utility.

Differential privacy, formalized in 2006 [17], offers a rigorous 
framework for protecting individual data while enabling useful data 
analysis. In the context of deep learning, DP is commonly applied by 
modifying stochastic gradient descent to use a differentially private 
variant (DP-SGD) [18]. At each training step, per-example gradients 
are clipped to a fixed norm, and Gaussian noise is added to their sum. 
This ensures that no single trace has a disproportionate influence on 
the model, embedding privacy guarantees directly into training.

Naturally, clipping and noise introduce bias and variance into gra-
dient estimates, potentially degrading model performance. To evalu-
ate this privacy–utility trade-off, we measure trace fidelity, this is, 
how realistic the generated trajectories remain as privacy constraints 
increase.
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Fig. 9. Hamming Distance between real and synthetic traces under different privacy 
budgets.

We train our model using DP-SGD, which enforces differential pri-
vacy by clipping each per-example gradient to a fixed norm 𝐶 and 
adding Gaussian noise with variance 𝜎2𝐶2. The cumulative privacy loss 
after 𝑇  updates is tracked using the Rényi moments accountant [19], 
yielding a formal (𝜀, 𝛿)-differential privacy guarantee: for any two 
training datasets that differ by a single trace, the probability that the 
algorithm produces a given output changes by at most a factor 𝑒𝜀, plus 
an additive term 𝛿 [17]. This means the presence or absence of any one 
trace has only a negligible impact on the model’s output, except with 
very low probability, its influence is limited to a small multiplicative 
factor. Following common practice, we fix 𝛿 = 1∕𝑁 , where 𝑁 is the 
number of training traces [20].

To interpret the privacy budget 𝜀, we follow widely adopted thresh-
olds [21]: values 𝜀 ≤ 1 indicate very high privacy, 1 < 𝜀 ≤ 4 reflect 
high to moderate privacy, and 𝜀 > 4 correspond to low privacy. These 
categories guide our evaluation in Fig.  9, where we assess models 
trained with 𝜀 = {0.9, 2, 5}. The figure reports the similarity—
measured via Hamming distance—between validation trajectories and 
synthetic traces generated under different privacy budgets. As expected, 
the non-private baseline (blue) achieves the highest fidelity, while 
fidelity gradually declines for models trained with stronger privacy 
guarantees: orange (𝜀 = 5), green (𝜀 = 2), and red (𝜀 = 0.9).

The figure illustrates the privacy–utility trade-off: With 𝜀 = 0.9 (red, 
very high privacy), over 90% of traces intersect less than 10% with real 
ones, showing low fidelity. With 𝜀 = 2 (green, moderate privacy), there 
is a better balance between utility and privacy. With 𝜀 = 5 (orange, 
low privacy), the generated traces closely resemble real ones but offer 
weaker privacy guarantees.

This analysis confirms that as the privacy budget increases, the 
model better captures patterns in the training data—yet also becomes 
more susceptible to potential privacy risks. Thus, selecting 𝜀 involves 
balancing privacy protection against the desired realism and utility of 
the generated traces.

5. Related work

Randomized and Changing MAC addresses. By changing the 
device’s MAC address over time, this technique prevents consistent 
identification of devices, thereby aiming the ability of third parties to 
track user activity. However, the effectiveness of this approach depends 
on the frequency of MAC address rotations. Studies, such as [22], 
emphasize that while frequent rotations improve privacy, they come 
with significant performance drawbacks. High rotation frequencies can 
lead to inefficient device authentication, prolonged handover processes, 
and increased network overhead, ultimately degrading the quality of 
service for users.

Furthermore, the adoption of randomized MAC addresses under-
mines the ability to track users for beneficial applications. Mobility 
tracking plays a crucial role in optimizing resource allocation, man-
aging network traffic, and enabling sustainability-focused initiatives 
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like energy-efficient network planning. As noted in [8], the inability to 
persistently identify devices due to randomized MAC addresses limits 
the development of such applications. This trade-off poses a challenge 
for network operators, who must balance the need for user privacy with 
the operational benefits derived from mobility insights.

Privacy of Network Mobility Data is challenging due to the intrin-
sic identifiability of human mobility traces. Studies such as [6,16] have 
demonstrated that mobility patterns are inherently unique, making re-
identification possible even with pseudonymization. For instance, [6] 
showed that as few as four spatiotemporal points can uniquely iden-
tify 95% of individuals in a dataset, while [16] revealed that Wi-Fi 
probe requests can infer social relationships between individuals based 
on shared or rare SSIDs. These findings emphasize the significant 
risks of privacy breaches when handling mobility data, even with 
anonymization.

Building on this, research such as [23] has highlighted how com-
bining anonymized mobility traces with external datasets further in-
creases re-identification risks. The predictability of human mobility, 
quantified at up to 88% in [24], was analyzed in a mobile network 
deployed across an entire country. Together, these studies reveal a 
multi-faceted challenge: while mobility data offers valuable insights, its 
use exposes sensitive patterns that are difficult to protect. These risks 
underscore the pressing need for robust privacy-preserving techniques, 
such as differential privacy and synthetic data generation, to enable 
safe utilization of mobility datasets without compromising individual 
privacy [25].

Private Data Publishing (PDP) seeks to address privacy concerns 
by enabling the release of network datasets in a manner that protects 
user privacy while preserving data utility for analysis. Techniques such 
as differential privacy [17], data anonymization [26], and synthetic 
data generation have been widely explored to achieve this balance [27].

Among these approaches, synthetic data generation using genera-
tive models has emerged as a promising solution for PDP [28]. No-
tably, [29] presents a generative pre-trained Transformer specifically 
designed for network traffic data, including packets and flows. This 
model achieves remarkable results in both understanding tasks, such 
as traffic classification, and generative tasks, such as simulation. Their 
results show that the synthetic datasets generated by the model closely 
replicate the behavior of the training data, offering a reliable way to 
preserve privacy while retaining utility.

Foundational Transformer models have become a dominant ar-
chitecture for modeling sequential data, particularly in Natural Lan-
guage Processing (NLP), since their introduction in [10]. They process 
sequences as discrete units called tokens, representing elements such as 
words or punctuation marks, depending on the tokenization strategy. 
Transformers are foundational for Large Language Models (LLMs) like 
BERT [30], GPT [31], and LLama [32].

The core of the Transformer architecture is the self-attention mech-
anism, which computes dependencies between all tokens in a sequence. 
While this enables the model to effectively capture long-term rela-
tionships, its 𝑂(𝐿2) computational complexity poses challenges for 
longer sequences [33]. Tokens are first represented as one-hot vec-
tors and transformed into high-dimensional embeddings, which encode 
semantic relationships [34]. Positional encodings are then added to 
embeddings to provide sequence order information [10].

Transformers stack layers combining two components: the Multi-
Head Self-Attention Mechanism, which identifies relationships between 
tokens through Query, Key, and Value vectors [10], and the Feed-
Forward Network (FFN), which refines token representations through 
linear transformations and non-linear activations. These capabilities 
make Transformers versatile and applicable beyond NLP, finding use 
in multivariate time series analysis [35], music generation [36], and 
network traffic modeling like [29].

Synthetic mobility data generation is shifting from passive ob-
servation to active simulation. Instead of only recording how devices, 
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vehicles, or people move, generative AI now allows us to create syn-
thetic traces to test infrastructure, or evaluate congestion-mitigation 
strategies.

Several recent systems tackle synthetic mobility data generation. 
[37] guides a diffusion model with detailed street maps to create 
realistic GPS-level paths for cities it has never seen. [38] couples a 
multimodal predictor with a reinforcement-learning controller so that 
simulated vehicles respect road geometry and basic kinematics. [39] 
embeds a city-scale trajectory-flow graph into a Transformer to suggest 
a user’s next point of interest within the next 30 min. Although their 
techniques differ, all three methods depend on explicit geometric priors 
such as road networks, movement constraints, or flow maps, and they 
either output continuous coordinates or stop at single-step prediction.

Transformer-based mobility generators continue to improve fidelity, 
yet they still rely on rich structural cues. [13] augments a hierarchical 
Transformer with building type, floor labels, and room-level topology 
to forecast multi-hour indoor trajectories.[40] treats path completion 
as masked-token infilling and conditions its language-style Transformer 
on geo-hashes, road-network adjacency, and elapsed-time hints to pre-
serve spatio-temporal realism. [41] shapes its attention weights with 
explicit distance and inter-visit-time kernels to recommend the next 
point of interest. In contrast, DiWiconsumes only raw Wi-Fi association 
sequences, avoiding maps, building metadata, simulators, and cross-
user graphs. Its autoregressive Transformer can roll out an entire day of 
activity, enabling traffic replay and what-if analysis well beyond single-
step forecasting. Crucially, we make privacy a first-class objective: 
alongside standard quality metrics we evaluate empirical leakage tests 
and formal differential-privacy accounting, a dimension previous work 
has overlooked.

Our contributions include leveraging Transformer-based models to 
generate privacy-preserving synthetic mobility data, enabling space 
utilization analysis and network planning without persistent device 
identification. Unlike MAC address randomization, our approach main-
tains mobility insights while reducing re-identification risks. We assess 
privacy through leakage analysis and membership inference attacks, 
confirming that the generated data preserves user anonymity. Ad-
ditionally, we extend Transformer-based models beyond packet-level 
analysis, optimizing temporal representations to better capture complex 
movement patterns in mobility traces.

The work most closely related to ours is [13], which also employs 
a Transformer model for modeling user mobility patterns. However, 
while their approach uses a base model with multimodal embeddings, 
we introduce a specialized encoding designed specifically for temporal 
data. This enhances the model’s ability to capture time-dependent 
mobility behaviors, improving the accuracy.

Most prior works on modeling network data [13,24,29] focus on 
improving predictive performance, with little attention to privacy risks. 
In contrast, our study explicitly evaluates the privacy implications of 
synthetic data generation. Given the sensitivity of user traces, assessing 
whether models inadvertently expose identifiable patterns is crucial in 
these environments.

6. Conclusions

In this work, we have analyzed a dataset capturing the mobility 
patterns of users connected to the campus WLAN. Our objective is 
to model device activity using Transformer models, leveraging their 
ability to process sequential data effectively.

Our model uses a Transformer architecture to analyze and pre-
dict device connectivity sequences while efficiently encoding temporal 
information to reduce parameters and improve generalization. This 
enables the generation of realistic spatiotemporal sequences that mimic 
real user behavior. We validate its performance through a comparative 
analysis with real traces and explore applications in space optimization, 
intelligent building management, user occupancy prediction, network 
mobility forecasting, and privacy evaluation in wireless networks.
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To ensure the generated data does not compromise the privacy of 
real devices, we conducted a thorough analysis of potential risks. These 
included evaluation of empirical metrics such as, direct leakage (found 
to be negligible), similarity searches between real and generated traces, 
and membership inference attacks. In all cases, our results show that 
the model effectively generalizes the behavior of real traces without 
exposing identifiable patterns that could link back to individual users. 
We further analyze the effect of differential privacy in the generation 
capabilities of the model.
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