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Understanding device mobility in wireless networks is essential for multiple purposes: optimizing space usage,
managing intelligent buildings, or improving network efficiency. However, the use of real mobility data
raises significant privacy concerns. In this work, we propose DiWi (a Digital twin for Wireless mobility),
a Transformer-based model to generate spatiotemporal mobility traces that mimic real-life behavior while

preserving user privacy. We validate the utility of DiWi by comparing real and synthetic datasets, and by
demonstrating its usefulness in a series of use cases related to mobility management, resource consumption,
and privacy enhancements. We also confirm that DiWi is secure by evaluating empirical privacy metrics, such
as, direct leakage, similarity searches, or membership inference. Our results illustrate that DiWi serves to
generate realistic and useful mobility patterns without exposing identifiable user traces, making it a valuable
tool for privacy-preserving mobility analysis. Furthermore, we investigate how enforcing differential privacy
affects the generative performance of the model.

1. Introduction

Wireless networks provide seamless connectivity by eliminating the
need for physical connections, enabling broad access to digital services.
As devices move through the network, they generate connectivity
patterns that represent traces of their activity [1]. These traces provide
insights into aspects such as high-traffic areas, peak activity times, and
typical usage patterns [2]. These insights into device behavior help
operators allocate resources more efficiently, reduce energy use with
adaptive management strategies [3], and improve systems like heating
optimization [4].

However, the pervasive use of wireless networks comes with sig-
nificant privacy concerns. Effective network management, optimiza-
tion, and security often require extensive monitoring, which involves
collecting sensitive data about users’ mobility, device activity, and
personal habits. If unauthorized entities access this data, it could be
exploited in a privacy-invasive manner, highlighting the need for strong
privacy-preserving techniques in data analysis and synthetic trace gen-
eration [5].

To address these concerns, it is essential to implement robust tech-
niques that secure and protect sensitive mobility data even when en-
cryption is breached or data is leaked. Methods such as pseudoanonymiza-
tion are known to only mildly solve this issue as demonstrated in [6],
where 93% of the users were re-identified even when this technique is
applied.
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In contrast to pseudoanonymization, synthetic data offers a practical
way to protect user privacy while preserving the statistical properties
needed for analysis [7]. By generating datasets that mimic real data
without directly linking to individual users, the risk of re-identification
is reduced. This allows researchers and organizations to study patterns,
train machine learning models, and develop solutions without exposing
sensitive information. One potential clear advantage of synthetic data
is that it does not have a one-to-one correspondence with real devices
(unlike some pseudoanonymization techniques), but its utility is at
question since it may not capture real-life dynamics.

In this work, we propose DiWi, a transformer-based Digital twin
for Wireless mobility. DiWi generates synthetic data that captures the
features of real-life device mobility in wireless networks, supporting the
development of relevant use cases without leaking personal data. More
specifically, the key contributions of this paper are:

» Transformer-based mobility modeling: We design and imple-
ment a Transformer-based model to predict device connectivity
sequences in a campus WLAN. By decomposing temporal in-
formation during encoding, the model reduces the number of
parameters while improving generalization, enabling it to gener-
ate realistic spatiotemporal traces. The model is trained on real
traces collected from a campus environment with thousands of de-
vices, users, and access points, ensuring accurate and meaningful
results.
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» Applications in network and space management: We explore
the model’s applicability in key use cases such as optimizing space
usage, managing intelligent buildings, predicting user occupancy
for energy-efficient Heating, Ventilation, and Air Conditioning
(HVAC) systems, and forecasting mobility for network manage-
ment. Additionally, we demonstrate its utility in developing and
evaluating privacy metrics for wireless networks.
Privacy-preserving data generation: To ensure the generated
data does not compromise user privacy, we assess risks such
as direct leakage, similarity searches, and membership inference
attacks [5]. Our analysis confirms that the model effectively
captures mobility patterns while preventing the exposure of iden-
tifiable user traces. Building on this, we further explore the trade-
off between utility and privacy by integrating a Differentially
Private mechanism into the model training process.

The rest of the paper is organized as follows: In Section 2, we
describe DiWi, providing an overview of the system, the dataset used,
the sequence encoding, and the modeling and training stages. We
evaluate DiWi in Section 3, both by analyzing device and Access Points
(AP) statistics, and by exploring its applicability in key use cases related
to sustainability, mobility management, and understanding anonymity
schemes. We assess DiWi’s privacy features in Section 4 by examining
exact matches, dataset closeness, and membership inference risks. Fi-
nally, we review the related work in Section 5 and conclude the paper
in Section 6.

2. DiWi: a digital twin for wireless mobility

Here we describe DiWi, a Transformer-based model designed for
predicting the next location of a user and generating synthetic mobility
traces. We detail its key components and their roles in processing device
connectivity sequences. Specifically, we explain how the model encodes
spatial and temporal information, integrates these representations, and
leverages a Transformer framework to predict the next connectivity
state.

2.1. Dataset

Unless otherwise noted, we rely on a dataset of users connected
to the WiFi network at in one Campus of Universidad Carlos III de
Madrid (UC3M).! The network is provided by 279 APs distributed
across seven buildings. These buildings, most with at least three floors,
serve various purposes such as classrooms, cafeterias, and study areas.
Each AP provides coverage for approximately 100 m?, while the entire
campus spans 1.6 million m?> and supports a community of around
10,000 individuals. The dataset spans four weeks of connectivity logs,
with no holidays or special events in between.

We are provided the data by system administrators, which rely on
a system that logs device connections and discretizes them every 5 min
intervals,” according to the following rules:

« If a device remained connected to a single AP during the interval,
that AP was recorded.

« If the device connected to multiple APs, the AP where it spent the
majority of time was assigned.

« If no connection was detected, the device was considered dis-
connected, and we introduce an artificial OUT status to represent
periods without connectivity.

1 https://www.uc3m.es/life-on-campus/campuses-plans/leganes

2 While this temporal resolution could be a limitation in high-mobility
scenarios, our results show that it is sufficient to accurately capture typical
trends in a campus WLAN, as demonstrated later.
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Before processing the data, we consulted the Data Protection Offi-
cer (DPO) at UC3M to ensure full compliance with ethical and legal
requirements. The dataset was pseudoanonymized using MD5 hashing
of user identifiers and MAC addresses. Access to the data was restricted
to secure servers with user-based authentication and activity logs.
In addition, the university provided public notice of data collection
practices, including the right to access, modify, or delete personal
data. Our team also formally committed not to attempt any form of
re-identification.

To ensure that each device’s behavior is accurately captured in the
dataset, we examined the potential impact of MAC address random-
ization on data quality. In our WLAN deployment, all access points
broadcast the same SSID, which limits the effect of MAC randomization,
as most modern devices use SSID-specific randomization, meaning they
keep the same address when connecting to the same SSID [8]. We
specifically searched for more aggressive forms of randomization that
would produce different identifiers each day, did not observe them: the
number of addresses per user remained stable during the whole period,
which is consistent with the lack of aggressive randomization.

2.2. Model overview

The architecture of DiWi is illustrated in Fig. 1, which summarizes
the entire workflow (represented from top to bottom). Starting from
the dataset, the system sequentially encodes spatial and temporal com-
ponents of device connectivity traces (top part of the figure). These
components are then merged into a unified spatiotemporal represen-
tation, capturing the full behavior of each device. Finally, the model
predicts the next connectivity state: whether the device will remain
connected to the same AP, transition to a different AP, or disconnect
entirely (OUT). The training process is designed to optimize these
predictions, ensuring accurate modeling of mobility behavior across the
network.

2.3. Sequence encoder

We restrict ourselves to the interval between 6:00 AM and 10:00
PM. Given the 5 min discretization, a trace consists of 192 tokens
(i.e., 12 per hour). The model’s vocabulary (V) includes the 279 APs
plus the OUT token, and therefore it captures all possible device loca-
tions, including disconnections.

To model device connectivity, we encode both spatial and temporal
information into a unified vector representation. This combined encod-
ing allows the model to capture the full context of a device’s mobility,
i.e., its location within the network and the timestamp.

For spatial encoding, we use an AP embedding matrix W,p,
which maps one-hot vectors representing possible connectivity states—
either a specific AP or the OUT state for disconnections—into high-
dimensional vectors of size d. This process generates spatial embed-
dings E,p, as shown in Eq. (1), which captures the spatial properties
of each connection:

Ejsp = Wyp - AP; (Embedding for inputAP) (@D)]

For the temporal encoding, we use absolute positional embeddings
to represent the exact timestamp of each connection. Unlike relative
positional embeddings commonly used in natural language processing
(e.g., to preserve word order in text), absolute embeddings are better
suited for mobility data, since the absolute position of a token within
the timeline provides critical contextual information. For example,
being disconnected at 7:00 AM (typically before a user arrives) conveys
different behavior than being disconnected at 2:00 PM (a common
lunch hour in Spain). To encode absolute time, we decompose it into
two components: hours (H) and minutes (M). Each component is
mapped into high-dimensional space using its own embedding matrix
as follows:


https://www.uc3m.es/life-on-campus/campuses-plans/leganes
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Fig. 1. Architecture of DiWi. The orange box shows the decomposed encoding and creation of the joint spatiotemporal representation, the red box represents the transformer
blocks and their computations, and the green box indicates the prediction of the next AP and the inference process. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

» The hour embedding Ey is computed using Wy, an embedding
matrix of shape (Ny X d), where Ny represents the number of
possible hour values:

EH = WH . H,- (Embedding for inputH) 2

+ The minute embedding E,, is computed using W),, an embedding
matrix of shape (N,, x d), where N,, represents the number of
possible minute values:

Ey =Wy - M, (Embedding for inputM) 3)

The final temporal embedding at each time step is obtained by
adding both embeddings (Ey + Ey;). This segmented approach to tem-
poral encoding is more efficient than using a single absolute positional
192 represents the total
number of time steps in a trace. As we will further analyze in Section 3,

encoding matrix of size L X d, where L =

by breaking time into smaller components (hours and minutes), we sig-
nificantly reduce the number of parameters required, which improves
memory efficiency while preserving the semantic meaning of absolute
time, making the model both scalable and practical for processing large
mobility traces.

Together, the spatial embedding E,p and temporal embeddings
(Eg +Eyp) form the joint spatiotemporal representation of device traces
h®, where the super index represents the layer / of the model.

2.4. Sequence modeling

After the joint spatiotemporal vector h!~D is composed, it is pro-
cessed through a series of Transformer blocks designed to capture
dependencies and relationships between connectivity states. Each block
includes two residual connections: one around the self-attention sub-
layer and another around the position-wise feed-forward sub-layer,
which together facilitate gradient flow through deep networks.

The Transformer block begins by normalizing the embeddings from
the previous layer, denoted by h!-! to improve training stability and
gradient flow [9]. The normalized input is then used to compute self-
attention by projecting the normalized input embeddings LN(h¢~") into
query Q, key K, and value V vectors. A scaled dot-product operation
between Q and K captures relationships between elements in the
sequence. These scores are then normalized using a softmax function
and applied to V, producing the attention output H,,. To retain the
original contextual information, the attention output is added back
to the input h’~D, and the result is passed through a normalization
layer, forming the final output of the attention sub-layer. This process
is summarized by Eq. (4)

Hy = fattn(LN(h(/)) )’

where f,, represents the self-attention mechanism applied to the
combined embeddings of access points, hours, and minutes, and LN
denotes the Layer Normalization operation applied after each sub-layer
to stabilize training and improve convergence [10].

h® = WY 4 Hyyy 4
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The output from the attention mechanism, h®, is normalized and
passed through a two-layer feed-forward network with a GELU non-
linearity. This network consists of two linear transformations: the first,
parameterized by W;, expands the dimensionality of the represen-
tation, while the second, W, reduces it back to its original size.
The resulting output is added back to the input of the sub-layer and
re-normalized, completing the Transformer block.

W = W GELUW,LN(h®)), h® = hn® + 1’ 5)

Finally, the output of the last Transformer block, hD, is projected
to token logits and normalized using a softmax function to produce a
probability distribution over the model’s vocabulary V. This distribu-
tion represents the likelihood of each possible next connection state
(e.g., an access point or disconnection), and the prediction process is
formalized in Eq. (6):

Py = softmax(hMaers) ) (6)

Using the probability distribution defined in Eq. (6), we generate
synthetic datasets sequentially. At each step, the model predicts the
next AP by sampling from the probabilities calculated based on the
sequence of tokens observed so far. This approach assumes conditional
independence, meaning that each prediction depends solely on the
context provided by the preceding sequence.

2.5. Training

The model is trained in a supervised manner using real device con-
nectivity traces. As we previously mentioned, each trace contains 192
tokens per day the device was connected to the network, corresponding
to 5 min intervals over a full 16-hour day. To enable the model to
capture longer temporal dependencies and better predict multi-day
behavior, we use a fixed context length of 250 tokens during training.
If a device appeared on the network for only one day, we extend its
trace by padding with the special OUT token to reach this length. Each
training sample consists of 250 input tokens, and the expected output is
the sequence shifted by one step, allowing the model to learn temporal
dependencies and predict the next connection state.

The hyperparameters were chosen following the principles outlined
in [11], which analyze the relationship between model performance
and hyperparameter choices. These parameters are: the embedding
dimension (d = 384), number of transformer layers (6), attention heads
(6), and dropout rate (0,15), to balance performance and generaliza-
tion. We use a cross-entropy loss function to compare predictions with
actual states, optimizing the model with the Adam optimizer (f, =
0.9, f, = 0.999) and a learning rate of 2-10~*. Training runs for up to 50
epochs, with early stopping if validation loss stagnates for 5 consecutive
epochs to prevent overfitting. We also found that a batch size of 64
ensures stable and efficient convergence.

Table 1 presents the hyperparameters of the models used to compare
against DiWi. The first part summarizes architectural details of Long
Short-Term Memory (LSTM), GPT2, and DiWi, including embedding
dimension d, number of layers, number of attention heads (for trans-
formers), and approximate total parameter count. The second part
breaks down the parameter composition of GPT2 and DiWi, showing
how both models share the same Transformer architecture. Despite
having a similar total number of parameters, DiWi achieves greater ef-
ficiency through a more compact and structured input representation—
using fewer tokens and a smaller embedding table—resulting in lower
memory usage and faster computation.

3. Performance evaluation

In this section, we evaluate DiWi’s ability to generate realistic data
by comparing the statistical relationships in the synthetic dataset to
those in the real dataset. This analysis ensures that the model not only
generates plausible individual samples but also captures the broader
patterns and dependencies found in the original data. We also highlight
potential applications of DiWi, particularly in sustainability and user
behavior analysis within wireless networks.
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3.1. Prediction of next AP

We first evaluate DiWi’s next-token prediction accuracy for a fixed
input length. Because every token represents a five-minute interval,
an input of one token corresponds to five minutes of past activity,
whereas 168 tokens span fourteen hours. For the prediction test we fix
the context window to the last 12 h of activity, which corresponds to
144 tokens at five-minute resolution.

We evaluate accuracy on a set of real connectivity traces and
compare our model against two baselines—(i) an LSTM and (ii) a
standard GPT-2 without our temporal encoding—both of which support
next-token prediction and full trace generation, allowing for a fair
comparison across the two core tasks.

+ LSTM: A standard LSTM network serves as a strong recurrent
baseline due to its ability to capture temporal dependencies in
sequential data.

» GPT-2: We include a GPT-2 model with standard sinusoidal po-
sitional embeddings [10] to isolate the contribution of our pro-
posed temporal encoding 2.3. It shares the same architecture
(aside from the encoding) and training setup as our model.

We provide in Table 2 the performance of each model in the
considered campus (first column). To illustrate the ability to generalize
of DiWi, we also consider a second campus of the University, consisting
in 434 APs (second column) and around 25,000 individuals. According
to the results, DiWi consistently outperforms all baselines in both cam-
puses. Although our evaluation was limited to these both environments,
we see that DiWi outperforms both baselines.

The results in Table 2 show that DiWi achieves the highest accuracy
in both environments, outperforming all other models. We attribute
this improvement to the richer semantic information captured by the
decomposed temporal embeddings. This is particularly evident when
comparing GPT2 and DiWi: the two share the same architecture, but
only DiWi includes explicit temporal decomposition into hours and
minutes. This design allows the model to learn that certain time combi-
nations carry similar meanings — for example, 9:55 AM and 10:00 AM
may correspond to transitions between classes or breaks, and thus
share behavioral patterns. By embedding hours and minutes separately,
DiWi can better generalize across such patterns, recognizing temporal
similarities that GPT2, with a flat encoding, cannot easily capture.

In the following sections, we compare key statistics between a
sample of real device traces from the test dataset in Campus 1 and
synthetic traces generated by our model. Each synthetic trace starts
with a token drawn from the distribution of first states seen in the
real data—so about 82% of traces begin in OUT—rather than forcing
every trace to start the same way. From that seed the model produces
a probability vector for the next state; we sample a token from it, slide
the context window to keep only the most recent tokens, and repeat
the process. Generation stops when the trace reaches a length of 192
tokens (one day from 6:00 AM to 10:00 PM).

3.2. Device and AP statistics

Here we compare different statistics from the data generated by
DiWi and the real dataset. We start by analyzing the number of unique
APs a device connects to in a single day, which is illustrated in Fig. 2(a).
The figure presents the Empirical Cumulative Distribution Function
(ECDF) of this metric, providing insights into mobility patterns. The
blue line represents the data from the real dataset, while the dashed
orange line corresponds to DiWi. The results confirm the similarity of
the statistics from both datasets, with 80% of devices connecting to
fewer than 10 unique APs per day (some form of localized mobility,
where users connect to one or two buildings at most). We also compare
both distributions using a Q-Q plot (subplot within Fig. 2(a)) that
illustrates a strong alignment along the reference line (red dashed line),
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Table 1
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Best hyperparameters found for DiWi, and the baseline models GPT2 and LSTM. Token embedding sizes are computed based on vocabulary
size and embedding dimension. Total tokens embedded refers to the sum of token categories passed through the input layer. For LSTM, the

“Npeaqs” column refers to the hidden dimension.

Model GPT2 DiWi
Model d Niayers Nheads Embedding Size (VI + Negnext) X d (VI + Ny + Ny) xd
LSTM 384 6 256 Transfor{Iler Blocks Nlayerzs =6
GPT2 384 6 6 Attention Block Params 4xd
- Feedforward Block Params 2xdx3d
DiWi 384 6 6
LayerNorm Params 4xd
Total Tokens ~ 10.9M ~ 10.8M
Table 2 1004 e
Model accuracy when predicting the next connectivity state. I_._"’-'-'—_’_’rﬁ_-_ﬁQ-Q Plot
Model Campus 1 Campus 2 80 1 » //
—_ 7 .
Acc. [%] Acc. [%] § - E 20 /.’/
LSTM Network 91.2 89.8 o 60 r o ol
GPT-2 91.8 91.9 b - e
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Table 3 207'_: —— Real
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Metric LSTM GPT2 Diwi N2 APs visited
N° visited APs 0.26 0.13 0.015 N ..
AP rank 0.083 0.076 0.036 (a) Distribution of visited APs.
Time spent 0.62 0.65 0.017 |
Time of arrival 0.078 0.059 0.032 12 Real
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) 1 Error Analysis
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w 8- —— Average
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The results reveal that for both datasets a small number of APs handle
the majority of connections, indicating that activity is clustered in key
locations (e.g., building halls, the library, and cafeterias). Both the real
and synthetic datasets exhibit the same trend, the largest difference
is less than 1%, demonstrating that the synthetic dataset effectively
captures key mobility behaviors.

Next, we analyze temporal patterns. To this aim, we compare for
each dataset the time of arrival and the time spent in the network
in Fig. 2(c) and Fig. 2(d), respectively. The figures confirm close
alignment between the real dataset and DiWi, while revealing both
short-term interactions, such as brief check-ins, and extended periods of
connectivity, which could correspond to activities like attending classes
or studying in the library.

To quantify the similarity between the statistics from DiWi and the
real dataset, we use the Kullback-Leibler (KL) divergence [12], where
lower values indicate a closer match between distributions. The results
from these comparisons are summarized in Table 3. The KL divergence
values demonstrate that the statistics from DiWi closely align with the
real dataset across spatial and temporal dimensions. As a reference, we
also provide in the table the KL divergence values corresponding to the
baseline models.

Interestingly, Table 3 shows that although the accuracy values
in Table 2 are similar between DiWi and the baseline models, the
KLD between the real and generated data reveals much larger dif-
ferences. Specifically, DiWi consistently outperforms both LSTM and
GPT-2 across all statistics. This highlights DiWi’s ability to capture the
underlying dynamics of user mobility on campus, not just the next
connection prediction.

These results validate the model’s ability to generate realistic mo-
bility traces that preserve key structural and behavioral patterns ob-
served in real-world data. We next present a series of scenarios to

(b) Device Distribution Across APs.
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Fig. 2. Trace mobility statistics comparing the synthetic and real traces. (a) Number
of APs visited during a day by each device, (b) Ranking of most visited APs, (c)
Distribution of time of arrival, and (d) Time spent connected to the network.

illustrate how DiWi can support the design of novel network manage-
ment solutions, without incurring in privacy risks (as demonstrated in
Section 4).

3.3. Scenariol: Sustainability

In this section, we show how synthetic traces generated by DiWi can
be used to analyze space occupancy patterns, like student arrival times
and duration of stay, to help optimize HVAC schedules [13], reduce
energy use, and improve building management while protecting pri-
vacy. Research [14,15] has shown that HVAC systems can save energy
by adjusting settings based on occupancy. While traditional methods,
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Fig. 3. Number of devices connected during a day. (a) Overall occupancy, (b)
Occupancy in Building 1, (¢) Occupancy in Building 5.

such as camera-based systems [14], pose privacy risks, synthetic traces
simulate device mobility without linking real and generated data (see
Section 4), providing a safer, privacy-friendly alternative.

To validate the utility of DiWi, we compare its campus space occu-
pancy with that of the real dataset. More specifically, we depict in Fig.
3(a) the total number of connected devices in the campus every 5 min,
with the blue line representing real data and the orange dashed line
corresponding to DiWi. The figure confirms that DiWi generated dataset
accurately captures overall trends, such as minimal network activity
at 6:00 AM, peak activity around 9:00 AM, and a gradual decrease in
occupation from 5:00 PM.

In addition to per-Campus occupation, we also analyze the occupa-
tion in a couple of representative buildings: a classroom building in Fig.
3(b)) and a cafeteria building in Fig. 3(c). According to the results, both
datasets expose similar activity patterns, with sharp peaks at the start
times of lectures in the case of the classroom building, and at times of
coffee breaks and lunch times in the case of the cafeteria.

These results confirm that DiWi can be used to design intelligent
HVAC systems without compromising user privacy. For instance, it is
clear that the system could be switched off at 7:00 AM, as fewer than
5% of devices remain connected across the university at that time.
Furthermore, more sophisticated approaches could be designed, with
a proper isolation of zones, e.g., the HVAC system in the cafeteria
between 3:00 PM and 5:00 PM could be switched to a low power mode
(the actual design of these policies is outside the scope of this work).

3.4. Scenario 2: Mobility management

Here we evaluate DiWi’s ability to support the design of advanced
mobility management schemes, i.e. mechanisms forecasting the move-
ment of devices, to support the design of better mobility schemes or
the design of infrastructure on demand approaches by activating APs
as needed. More specifically, here we focus on the ability of DiWi to
analyze the connection history of a device, which we refer to as context,
and then forecast its next connection point. To assess the model’s
predictive performance, we evaluate how its accuracy varies with the
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amount of context provided for inference. To compute this, we first
select the context_length used by the model for inference. Then,
we sample a sequence of the chosen length for each device and use it
to predict the next connection. This process is repeated across different
context lengths, allowing us to assess how the model performs under
varying amounts of historical data.

We represent in Fig. 4 the accuracy as a function of context_
length, measured in hours, where each hour corresponds to 12 tokens
(with each token representing a 5 min interval). The shaded regions
around the curve represent twice the standard deviation (2¢), indicat-
ing the variability in accuracy across samples. The results illustrate
that accuracy improves as context length increases, but gains level
off beyond 2 h. This suggests that while additional context initially
enhances predictions, there is a point of diminishing returns. We note
that there is a slight increase in accuracy after 10 h of context, which
we conjecture that may be caused by the ability of DiWi to leverage
context from the previous day to predict the behavior on a given next
day.

3.5. Scenario 3: Anonymity schemes

In this section we describe how DiWi can support the design of
privacy-preserving schemes. This is motivated by previous studies, such
as [6,16], which have identified some variables related to network
activity that can be used to unequivocally identify a device (without
using any device ID). In this section, we briefly introduce two different
metrics regarding the identifiability of a device, and illustrate how the
synthetic trace provided by DiWi shares the same results as the real-life
dataset.

First, we define spatiotemporal unicity as the number of randomly
chosen spatiotemporal points in a device’s trace that make it uniquely
identifiable. Following this definition, the uniqueness of a dataset is the
average unicity across all devices in that dataset, which summarizes
how identifiable the devices are. We represent in Fig. 5(a) the unicity
for an increasing number of randomly chosen spatiotemporal points.
According to the figures, both the real dataset and DiWi produce vary
similar results. With four spatiotemporal points, 93% of devices in the
real dataset are unique, compared to 91% in the synthetic dataset.
These results confirm that DiWi preserves the privacy dynamics of the
real data, making it a useful tool for evaluating privacy risks in mobility
networks and designing new Randomized and Changing MAC (RCM)
schemes.

Second, we can also defined a device’s uniqueness based on its most
frequently visited APs. To do this, we create a fingerprint for each
device using the list of APs where it spends most time. Following this,
a device is considered unique if no other device has the same list of
top p APs in that order. We represent in Fig. 5(b) the relative number
of unique devices in a trace as p increases. As in the previous case,
both the real dataset and DiWi follow a similar pattern, e.g., with
fingerprints of 4 APs, 77% of devices are unique in the real dataset,
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Fig. 5. Metrics for evaluating the uniqueness of device mobility patterns.

compared to 81% in the synthetic dataset. Beyond p = 5, uniqueness
levels off, suggesting that adding more APs to the fingerprint does not
significantly increase a device’s distinctiveness.

4. Privacy assessment

In this section, we assess the potential risks of real-life data from
the use of DiWi. This is essential to confirm that the generated data
has the ability to mimic mobility patterns (as illustrated above) while
preventing the exposure of sensitive information, making it suitable for
the scenarios discussed in Section 3. Our assessment is two-fold: first,
we perform an empirical evaluation of the privacy risks, which serves to
provide some context about the small risks from using DiWi (but does
not provide formal guarantees), and second, we illustrate how DiWi can
be extended to support formal privacy guarantees.

4.1. Exact matches

First, we assess the risk of the model leaking complete real traces,
i.e., the possibility of generating a trace that is identical to one from
the training dataset. This scenario represents a significant concern as it
would indicate two problems: (1) the model is overfitting and failing
to generalize, and (2) the behavior of a real device is being exposed in
the synthetic dataset. Such outcomes would compromise the purpose
of using synthetic data by diminishing its privacy-preserving benefits.

To assess this risk, we analyze the trace generation process de-
scribed in Section 2.4, where traces are generated sequentially based
on the model’s learned probabilities. Assuming independence, the like-
lihood of reproducing a training trace is computed as the product of
probabilities at each step (or equivalently, the sum of log probabilities).
During synthetic dataset generation, we typically select the most likely
token at each step. However, to evaluate the probability of reproducing
a training trace, we take a different approach: instead of selecting the
most likely AP, we use the actual AP observed in the training trace.
By summing the log probabilities of these events across the sequence,
we estimate the likelihood of generating an exact replica of a training
trace.

Fig. 6 presents the distribution of log probabilities for generating
traces from the training set (blue) and the synthetic dataset (orange).
The x-axis represents the log probability, while the y-axis shows the
percentage of training traces with a given probability. The results
indicate that the average probability of exactly reproducing a training
trace is approximately 10120, This suggests that, on average, the model
would need to generate 10! traces to replicate a single training trace,
reinforcing that the model generalizes patterns rather than memorizing
them.

The orange distribution represents the probability of generating
traces from the synthetic dataset used in this study. While some syn-
thetic traces exhibit probability values close to those in the training set,
the overlap remains limited. The overall probability of generating new,
distinct traces remains dominant, indicating that the model primarily
creates new patterns rather than reproducing previously seen data.

Interestingly, some traces are more likely to be replicated than
others. This variation, discussed further in the next section, may result
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from certain AP sequences appearing more frequently in the training
dataset. While this imbalance reflects the real-world distribution of user
activity and preferences on campus, it is also necessary for the model
to accurately capture device behavior. By representing these natural
patterns, the synthetic dataset maintains the fidelity of user behavior
without directly exposing sensitive information.

4.2. Closeness between datasets

Above we have analyzed the probability of the DiWi generating an
exact replica of a real device’s trace, which is practically negligible.
However, the model may still produce synthetic traces that closely
resemble real ones. For instance, consider two devices with similar
mobility patterns: both connect to a sequence of the same APs but differ
at one or two points. While these traces are not identical, their strong
similarities may result in the synthetic data inadvertently revealing
aspects of the real device’s mobility pattern.

To assess this risk, we adapt inter- and intra-similarity analysis [12],
originally used for benchmarking dataset quality, to evaluate privacy
leakage. Specifically, we measure the “closeness” between real-to-real
traces and real-to-synthetic traces. By comparing the inter- and intra-
similarity scores between pairs of real devices and pairs of real and
synthetic devices, we evaluate whether the synthetic data retains iden-
tifiable patterns from the real data. If the synthetic traces are too similar
to the real ones, privacy risks may emerge. Conversely, traces that are
too dissimilar could make it obvious which traces are synthetic. Striking
a balance ensures that the synthetic data preserves the utility of the real
data without compromising privacy.

To quantify similarity, we use the Hamming distance® between two
traces. This metric counts the number of matching APs in the same
order, excluding instances of the OUT state. This exclusion is justified
because the OUT state does not provide meaningful information about
a device’s mobility. Using this metric, we calculate the percentage of a
real trace that is “replicated” in a synthetic trace, providing a concrete
measure of how much real mobility data is reflected in the synthetic
dataset.

Fig. 7 presents the ECDF of the proportion of training traces that
overlap with other training traces and with generated traces. In both
cases, 90% of training traces intersect with at most 20% of others,
indicating that generated traces are as similar to real traces as real
traces are to each other. The QQ plot further confirms a strong align-
ment between the distributions, suggesting that the generated traces
maintain a balance between similarity and diversity, reducing the risk
of privacy breaches.

As noted earlier, some mobility patterns are more unique than
others. These common movement sequences are not a major concern
since they are shared by many traces, making reidentification difficult.

3 Technically, this is more of a similarity metric than a true distance
measure. |L| — H(L)
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Fig. 7. Hamming Distance between traces.

The real issue is the unique sequences in the generated traces that
match specific real devices, posing a privacy risk.

To assess this risk, we analyze the overlap between generated traces
and the training set. For each overlapping subsequence (Fig. 7), we
determine how many device traces from the training set contain that
same subsequence. This allows us to assess whether the overlap is
distributed across multiple training devices, or if it is limited to a single
user, which could indicate potential leakage of identifying patterns.

Our analysis shows that only 2% of exposed training patterns
uniquely identify a single device. This suggests that while some subse-
quences are exposed, they are usually shared among multiple devices,
keeping the risk of identifiability low.

4.3. Membership inference

We now examine a scenario in which an attacker has partial access
to real device traces and the ability to query the model to generate
synthetic traces.

In this attack, the goal is to train a classifier that determines whether
a given trace comes from the real training dataset (D,,) or the synthetic
dataset (Dyy)- The attacker has access to both synthetic traces and a
portion of the training data but relies solely on the information within
the traces to distinguish between them.

To make this distinction, the attacker trains a classifier to assign
a label of 1 to traces from the training set and O to synthetic traces.
The classification is based on device behavior profiles, which include
features such as time of arrival, duration of connection, most frequently
used AP, and the number of APs visited.

As depicted in Fig. 8(a), the attacker first accesses real traces from
DiWi’s training dataset, constructs profiles for these traces, and assigns
them the label 1. The attacker then queries the model to generate
synthetic traces, computes profiles for these traces, and assigns them
the label 0. Using this labeled dataset, the attacker trains a classifier to
conduct the membership inference attack. By employing an explainable
model, the attacker can identify which features the model uses to make
its decisions, uncovering correlations and patterns that may reveal
potential vulnerabilities in the synthetic dataset.

In Fig. 8(b), we present the results for decision trees and random
forests. The observed accuracies are 52% and 56%, respectively, which
are only slightly better than random guessing. In a binary classification
task like distinguishing between real and synthetic traces, a random
classifier would achieve approximately 50% accuracy. The minimal
improvement over this baseline suggests that the models struggle to
identify meaningful patterns or signals to reliably distinguish between
the two classes. This indicates that the synthetic dataset closely repli-
cates the distribution of connectivity patterns observed in the real
dataset.

Fig. 8(c) presents the feature importance of the Random Forest
model used for the membership inference attack, which determines
whether a given trace was part of the training dataset. The results
show that Most Used AP is the most influential feature, indicating
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that access point usage patterns contribute to distinguishing between
real (training) and synthetic traces. However, its importance is not
significantly higher than other features, and the overall distribution of
feature importance is relatively uniform.

These results suggest that the membership inference attack struggles
to distinguish between real and synthetic traces, with accuracy barely
exceeding random guessing. The lack of a strong signal in feature
importance further indicates that the generated dataset closely mirrors
real connectivity patterns without exposing identifiable information.
This reinforces the idea that DiWi effectively preserves privacy while
maintaining realistic mobility patterns.

4.4. Formal privacy guarantees

So far, we have assessed the privacy implications of our generator
through empirical evaluations, measuring how likely it is to produce
traces that resemble those seen during training. While these analyses
provide useful indicators of re-identification risk, they do not offer for-
mal guarantees. In this section, we address this limitation by exploring
the integration of differential privacy (DP) into the training process. We
analyze how applying DP affects the behavioral fidelity of the generated
traces, and quantify the trade-off between privacy strength and data
utility.

Differential privacy, formalized in 2006 [17], offers a rigorous
framework for protecting individual data while enabling useful data
analysis. In the context of deep learning, DP is commonly applied by
modifying stochastic gradient descent to use a differentially private
variant (DP-SGD) [18]. At each training step, per-example gradients
are clipped to a fixed norm, and Gaussian noise is added to their sum.
This ensures that no single trace has a disproportionate influence on
the model, embedding privacy guarantees directly into training.

Naturally, clipping and noise introduce bias and variance into gra-
dient estimates, potentially degrading model performance. To evalu-
ate this privacy-utility trade-off, we measure trace fidelity, this is,
how realistic the generated trajectories remain as privacy constraints
increase.
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We train our model using DP-SGD, which enforces differential pri-
vacy by clipping each per-example gradient to a fixed norm C and
adding Gaussian noise with variance ¢2C?. The cumulative privacy loss
after T updates is tracked using the Rényi moments accountant [19],
yielding a formal (e, §)-differential privacy guarantee: for any two
training datasets that differ by a single trace, the probability that the
algorithm produces a given output changes by at most a factor e¢, plus
an additive term § [17]. This means the presence or absence of any one
trace has only a negligible impact on the model’s output, except with
very low probability, its influence is limited to a small multiplicative
factor. Following common practice, we fix 5 = 1/N, where N is the
number of training traces [20].

To interpret the privacy budget ¢, we follow widely adopted thresh-
olds [21]: values £ < 1 indicate very high privacy, 1 < £ < 4 reflect
high to moderate privacy, and £ > 4 correspond to low privacy. These
categories guide our evaluation in Fig. 9, where we assess models
trained with ¢ = {0.9, 2, 5}. The figure reports the similarity—
measured via Hamming distance—between validation trajectories and
synthetic traces generated under different privacy budgets. As expected,
the non-private baseline (blue) achieves the highest fidelity, while
fidelity gradually declines for models trained with stronger privacy
guarantees: orange (e = 5), green (¢ = 2), and red (¢ = 0.9).

The figure illustrates the privacy—utility trade-off: With £ = 0.9 (red,
very high privacy), over 90% of traces intersect less than 10% with real
ones, showing low fidelity. With ¢ = 2 (green, moderate privacy), there
is a better balance between utility and privacy. With ¢ = 5 (orange,
low privacy), the generated traces closely resemble real ones but offer
weaker privacy guarantees.

This analysis confirms that as the privacy budget increases, the
model better captures patterns in the training data—yet also becomes
more susceptible to potential privacy risks. Thus, selecting & involves
balancing privacy protection against the desired realism and utility of
the generated traces.

5. Related work

Randomized and Changing MAC addresses. By changing the
device’s MAC address over time, this technique prevents consistent
identification of devices, thereby aiming the ability of third parties to
track user activity. However, the effectiveness of this approach depends
on the frequency of MAC address rotations. Studies, such as [22],
emphasize that while frequent rotations improve privacy, they come
with significant performance drawbacks. High rotation frequencies can
lead to inefficient device authentication, prolonged handover processes,
and increased network overhead, ultimately degrading the quality of
service for users.

Furthermore, the adoption of randomized MAC addresses under-
mines the ability to track users for beneficial applications. Mobility
tracking plays a crucial role in optimizing resource allocation, man-
aging network traffic, and enabling sustainability-focused initiatives
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like energy-efficient network planning. As noted in [8], the inability to
persistently identify devices due to randomized MAC addresses limits
the development of such applications. This trade-off poses a challenge
for network operators, who must balance the need for user privacy with
the operational benefits derived from mobility insights.

Privacy of Network Mobility Data is challenging due to the intrin-
sic identifiability of human mobility traces. Studies such as [6,16] have
demonstrated that mobility patterns are inherently unique, making re-
identification possible even with pseudonymization. For instance, [6]
showed that as few as four spatiotemporal points can uniquely iden-
tify 95% of individuals in a dataset, while [16] revealed that Wi-Fi
probe requests can infer social relationships between individuals based
on shared or rare SSIDs. These findings emphasize the significant
risks of privacy breaches when handling mobility data, even with
anonymization.

Building on this, research such as [23] has highlighted how com-
bining anonymized mobility traces with external datasets further in-
creases re-identification risks. The predictability of human mobility,
quantified at up to 88% in [24], was analyzed in a mobile network
deployed across an entire country. Together, these studies reveal a
multi-faceted challenge: while mobility data offers valuable insights, its
use exposes sensitive patterns that are difficult to protect. These risks
underscore the pressing need for robust privacy-preserving techniques,
such as differential privacy and synthetic data generation, to enable
safe utilization of mobility datasets without compromising individual
privacy [25].

Private Data Publishing (PDP) seeks to address privacy concerns
by enabling the release of network datasets in a manner that protects
user privacy while preserving data utility for analysis. Techniques such
as differential privacy [17], data anonymization [26], and synthetic
data generation have been widely explored to achieve this balance [27].

Among these approaches, synthetic data generation using genera-
tive models has emerged as a promising solution for PDP [28]. No-
tably, [29] presents a generative pre-trained Transformer specifically
designed for network traffic data, including packets and flows. This
model achieves remarkable results in both understanding tasks, such
as traffic classification, and generative tasks, such as simulation. Their
results show that the synthetic datasets generated by the model closely
replicate the behavior of the training data, offering a reliable way to
preserve privacy while retaining utility.

Foundational Transformer models have become a dominant ar-
chitecture for modeling sequential data, particularly in Natural Lan-
guage Processing (NLP), since their introduction in [10]. They process
sequences as discrete units called tokens, representing elements such as
words or punctuation marks, depending on the tokenization strategy.
Transformers are foundational for Large Language Models (LLMs) like
BERT [30], GPT [31], and LLama [32].

The core of the Transformer architecture is the self-attention mech-
anism, which computes dependencies between all tokens in a sequence.
While this enables the model to effectively capture long-term rela-
tionships, its O(L?) computational complexity poses challenges for
longer sequences [33]. Tokens are first represented as one-hot vec-
tors and transformed into high-dimensional embeddings, which encode
semantic relationships [34]. Positional encodings are then added to
embeddings to provide sequence order information [10].

Transformers stack layers combining two components: the Multi-
Head Self-Attention Mechanism, which identifies relationships between
tokens through Query, Key, and Value vectors [10], and the Feed-
Forward Network (FFN), which refines token representations through
linear transformations and non-linear activations. These capabilities
make Transformers versatile and applicable beyond NLP, finding use
in multivariate time series analysis [35], music generation [36], and
network traffic modeling like [29].

Synthetic mobility data generation is shifting from passive ob-
servation to active simulation. Instead of only recording how devices,
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vehicles, or people move, generative Al now allows us to create syn-
thetic traces to test infrastructure, or evaluate congestion-mitigation
strategies.

Several recent systems tackle synthetic mobility data generation.
[37] guides a diffusion model with detailed street maps to create
realistic GPS-level paths for cities it has never seen. [38] couples a
multimodal predictor with a reinforcement-learning controller so that
simulated vehicles respect road geometry and basic kinematics. [39]
embeds a city-scale trajectory-flow graph into a Transformer to suggest
a user’s next point of interest within the next 30 min. Although their
techniques differ, all three methods depend on explicit geometric priors
such as road networks, movement constraints, or flow maps, and they
either output continuous coordinates or stop at single-step prediction.

Transformer-based mobility generators continue to improve fidelity,
yet they still rely on rich structural cues. [13] augments a hierarchical
Transformer with building type, floor labels, and room-level topology
to forecast multi-hour indoor trajectories.[40] treats path completion
as masked-token infilling and conditions its language-style Transformer
on geo-hashes, road-network adjacency, and elapsed-time hints to pre-
serve spatio-temporal realism. [41] shapes its attention weights with
explicit distance and inter-visit-time kernels to recommend the next
point of interest. In contrast, DiWiconsumes only raw Wi-Fi association
sequences, avoiding maps, building metadata, simulators, and cross-
user graphs. Its autoregressive Transformer can roll out an entire day of
activity, enabling traffic replay and what-if analysis well beyond single-
step forecasting. Crucially, we make privacy a first-class objective:
alongside standard quality metrics we evaluate empirical leakage tests
and formal differential-privacy accounting, a dimension previous work
has overlooked.

Our contributions include leveraging Transformer-based models to
generate privacy-preserving synthetic mobility data, enabling space
utilization analysis and network planning without persistent device
identification. Unlike MAC address randomization, our approach main-
tains mobility insights while reducing re-identification risks. We assess
privacy through leakage analysis and membership inference attacks,
confirming that the generated data preserves user anonymity. Ad-
ditionally, we extend Transformer-based models beyond packet-level
analysis, optimizing temporal representations to better capture complex
movement patterns in mobility traces.

The work most closely related to ours is [13], which also employs
a Transformer model for modeling user mobility patterns. However,
while their approach uses a base model with multimodal embeddings,
we introduce a specialized encoding designed specifically for temporal
data. This enhances the model’s ability to capture time-dependent
mobility behaviors, improving the accuracy.

Most prior works on modeling network data [13,24,29] focus on
improving predictive performance, with little attention to privacy risks.
In contrast, our study explicitly evaluates the privacy implications of
synthetic data generation. Given the sensitivity of user traces, assessing
whether models inadvertently expose identifiable patterns is crucial in
these environments.

6. Conclusions

In this work, we have analyzed a dataset capturing the mobility
patterns of users connected to the campus WLAN. Our objective is
to model device activity using Transformer models, leveraging their
ability to process sequential data effectively.

Our model uses a Transformer architecture to analyze and pre-
dict device connectivity sequences while efficiently encoding temporal
information to reduce parameters and improve generalization. This
enables the generation of realistic spatiotemporal sequences that mimic
real user behavior. We validate its performance through a comparative
analysis with real traces and explore applications in space optimization,
intelligent building management, user occupancy prediction, network
mobility forecasting, and privacy evaluation in wireless networks.
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To ensure the generated data does not compromise the privacy of
real devices, we conducted a thorough analysis of potential risks. These
included evaluation of empirical metrics such as, direct leakage (found
to be negligible), similarity searches between real and generated traces,
and membership inference attacks. In all cases, our results show that
the model effectively generalizes the behavior of real traces without
exposing identifiable patterns that could link back to individual users.
We further analyze the effect of differential privacy in the generation
capabilities of the model.
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