
Abstract— Stochastic computing (SC) has emerged as an 
efficient low-power alternative for deploying neural networks 
(NNs) in resource-limited scenarios, such as the Internet of 
Things (IoT).  By encoding values as serial bitstreams, SC 
significantly reduces energy dissipation compared to 
conventional floating-point (FP) designs; however, further 
improvement of layer-wise mixed-precision implementation 
for SC remains unexplored. This paper introduces Adjustable 
Sequence Length (ASL), a novel scheme that applies mixed-
precision concepts specifically to SC NNs. By introducing an 
operator-norm–based theoretical model, this paper shows that 
truncation noise can cumulatively propagate through the 
layers by the estimated amplification factors. An extended 
sensitivity analysis is presented, using Random Forest (RF) 
regression to evaluate multi-layer truncation effects and 
validate the alignment of theoretical predictions with practical 
network behaviors. To accommodate different application 
scenarios, this paper proposes two truncation strategies 
(coarse-grained and fine-grained), which apply diverse 
sequence length configurations at each layer. Evaluations on a 
pipelined SC MLP synthesized at 32 nm demonstrate that ASL 
can reduce energy and latency overheads by up to over 60% 
with negligible accuracy loss. It confirms the feasibility of the 
ASL scheme for IoT applications and highlights the distinct 
advantages of mixed-precision truncation in SC designs.  

Index Terms—Internet of things, neural network, 
stochastic computing, energy efficiency, mixed-precision 
inference. 

I. INTRODUCTION

Neural networks (NNs) are being increasingly 
recognized for their capability to effectively model and 
solve intricate problems, with widespread application in 
domains including robot control [1], recommender systems 
[2], natural language processing [3] and the Internet of 
Things (IoT). While efficient parallelized computations of 
NNs have been extensively investigated, they often come 
with stringent hardware complexity at nanoscales. 
Stochastic computing (SC) has emerged as an efficient 
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hardware solution at low power for NN implementation [4]. 
SC NNs are particularly appealing for energy-constrained 
platforms due to the low overhead and excellent error 
tolerance. They also offer distinct benefits for specific 
applications, such as online learning and adaptive inference 
fine-tuning [4]. 

The computational scale of NNs has kept increasing to 
billions of parameters as evidenced in recent machine 
learning (ML) applications [5]. The demands for these 
networks place a significant requirement on energy 
dissipation; for tasks with smaller scales, such as IoT 
devices, energy efficiency is also crucial due to hardware 
and power constraints [6]. ML models have been widely 
applied to emerging 6G IoTs and other high-frequency 
communications, raising extensive challenges in terms of 
computation overhead and energy consumption [7]-[9]. 
Therefore, IoT devices usually employ compact NNs using 
techniques such as quantization or adaptive resolution [10], 
[11]. TinyML has focused on running ML models on 
devices with limited resources [12], always seeking to 
balance performance and efficiency but considerably 
reducing accuracy. Other approaches have proposed a 
hybrid method, executing predictions on the device except 
when performance is not adequate, in which case it is run in 
the cloud with more complex versions of the model [13]. 
Additionally, these applications usually require a fast 
response to user interaction and real-time communication 
with cloud or parallel devices, so low-latency hardware 
implementations are also needed [14].  

Due to their efficient arithmetic features, SC NNs are 
affected by the stringent trade-off between accuracy and 
computational energy/latency [15]. A sufficiently long 
sequence is critical for accurate propagation and gradient 
updates in the NN; however, increased sequence lengths 
result in higher energy usage and latency, with serial 
processing of SC bitstreams presenting an approximately 
proportional dependency. 
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A reduction of the overheads in SC NNs could involve 
an intuitive strategy, i.e., using shorter sequence lengths, 
but it is crucial to achieve this without significantly 
compromising accuracy. When considering a scheme of 
mixed-precision inference for traditional FP NNs, various 
layers perform unique functions; hence, their impact on the 
outputs could be different [16].  Also, research indicates 
that layers within NNs differ significantly in their ability to 
tolerate errors [17], presenting the diverse effects of 
quantization errors on layers. However, mixed-precision 
inference in SC, or layer-wise adjustable stochastic 
sequences, has not been studied; in particular, by employing 
appropriate truncation strategies, different sequence lengths 
across layers in SC NNs are expected to improve energy 
and latency with a small accuracy loss. 

This paper proposes an efficient scheme for SC NNs 
using an Adjustable Sequence Length (ASL) that is 
amenable to IoT applications. By employing layer-wise 
adjustable sequence lengths, the scheme contributes to 
reducing overheads while keeping a satisfactory accuracy. 
With the design directly truncating Sobol sequences in 
stochastic number generators (SNGs), ASL avoids 
additional costs and possible correlation problems. This 
paper evaluates the inference of Multilayer Perceptrons 
(MLPs) as per their well-developed SC designs [18], [20]. 
The main contributions of this paper are:  
1) Propose ASL as the first dedicated, layer-wise

truncation scheme in SC NNs, so enabling mixed-
precision inference with reduced design overhead and
high flexibility.

2) Develop an operator-norm–based theoretical model for
accumulated truncation errors and validate it with
random-forest (RF)-based sensitivity experiments.
Evaluate for the first time truncation noise propagation
in multi-layer SC NNs.

3) Justify that Sobol sequences preserve low correlation
under truncation better than LFSR-based SNGs,
bridging a key gap in SC hardware design by ensuring
consistent accuracy even with truncated sequence
lengths.

4) Present two distinct truncation methods for ASL, a
coarse-grained approach for direct deployment and a
fine-grained approach leveraging grid search, for better
configuring layer-wise truncation under different
accuracy-energy/latency trade-off requirements.

5) Confirm that ASL achieves substantial energy and
latency reductions (up to more than 60 % savings) with
negligible accuracy loss by synthesizing a pipelined SC
MLP at 32 nm. Establish practical feasibility for IoT
and other resource-constrained applications.

The rest of the paper is organized as follows: Section II 
reviews fundamental SC concepts and highlights the design 
features relevant to the proposed ASL scheme. Section III 
presents the theoretical analysis, including the noise model, 
operator-norm–based amplification factors, and empirical 
sensitivity analysis. Section IV proposes the ASL scheme 

and details the ASL truncation strategies by discussing both 
the coarse-grained and fine-grained approaches. Section V 
evaluates the ASL scheme by comparing theoretical 
estimates against actual hardware synthesis results, and it 
demonstrates the method’s effectiveness in reducing 
energy/latency overheads. Section VI discusses the 
contributions of this paper. Finally, this paper ends with the 
conclusion and future works in Section VII.  

II. PRELIMINARIES

A. Stochastic Computing
In SC, a binary bitstream is utilized to represent a number

in conventional digital arithmetic. Consider a 𝐿 -bit 
stochastic sequence 𝑆 = (𝑆!, 𝑆",⋯ , 𝑆#); each bit follows an 
independent and identical Bernoulli distribution with the 
parameter 𝑝  that can be interpreted as the probability of 
observing a “1” in the sequence [15]. The total number of 
“1”s can be represented as the sum of 𝑆! + 𝑆" +⋯+ 𝑆# in 
a binomial distribution. The encoded value 𝑠 is represented 
by a given stochastic sequence and has two formats: 

1) Unipolar representation: A 𝐿-bit stochastic sequence
with 𝐿′ “1”s encodes a value of 𝐿′/𝐿 = 𝑝. It represents a 
value in the range of [0, 1] with data precision of 𝐿$!. 

2) Bipolar representation: A 𝐿-bit stochastic sequence
with 𝐿′ “1”s encodes a value of 𝑠 = (2𝐿′ − 𝐿)/𝐿 = 2𝑝 − 1. 
It represents a value within [−1, 1] with a data precision of 
2𝐿$!. 

Therefore, longer sequence lengths permit a higher 
computation precision (as shown in Fig. 1). Also, the 
Extended Stochastic Logic (ESL) can be applied to 
substantially increase the value range of SC representations 
[18]. A number can be represented by the division of two 

Fig. 1.  Precision of unipolar multiplication with different stochastic 
sequence length (assuming low correlation between two sequences). A 
sufficient sequence length is critical to ensure an accurate computation. 

Fig. 2.  Diagram of a generic SC system [34]: (a) the overall system; (b) 
a stochastic number generator (SNG); (c) a probability estimator (PE).  
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stochastic sequences, so it will not be limited to [0, 1] in the 
unipolar representation or [-1, 1] in the bipolar 
representation. By using the sequences for computation, SC 
can significantly reduce the complexity of arithmetic 
circuits in hardware implementations; for example, as 
shown in Fig. 1, the product of two numbers is simply 
computed by an AND gate in the unipolar representation. 
Therefore, SC is a promising scheme to implement 
computation-intensive systems (e.g., NNs) in which 
conventional computations using floating-point (FP) 
formats dissipate large power/energy.  

Fig. 2 shows the diagram of a generic SC system [34]. 
When implementing an SC NN, the main difference from 
the FP version is that conventional arithmetic modules are 
replaced by SC building blocks. Since this paper focuses on 
the inference process of NNs, the SC arithmetic building 
blocks shown in Fig. 2 (a) mostly include the units for 
implementing the multiplication-accumulation (MAC) 
process and the activation function. To implement the MAC, 
a network of XNOR gates is required to multiply the 
stochastic sequences generated for the inputs and their 
related weights; then, the adder tree is responsible for 
accumulating these SC products based on a multiplexer tree. 
A stochastic approximation to Tanh (STanh) is utilized after 
the ESL-based MAC process as the activation function. The 
above arithmetic units have been proven efficient for SC 
NN designs, and their implementation details are described 
in related works [18], [22], [23]. 

In addition to the arithmetic modules, the conversion 
circuits must be included in the SC design. As shown in Fig. 
2, an SNG is essential for converting input data into 
stochastic sequences, and a probability estimator is used for 
converting back the sequences. The SNG is generally made 
of a random number generator (RNG) and a comparator. 
The RNGs can be implemented by a pseudo-random linear 
feedback shift register (LFSR) or quasi-random Sobol 
sequences [21]. Within the proposed ASL scheme, the 
selection of proper RNGs is crucial to ensure low 
correlation among truncated sequences. The Sobol 
sequence is preferred since it maintains a low correlation 
with truncation (as discussed in the subsequent sections). 
Further implementation details of the SC NNs and SNGs 
considered in this paper are presented in Section V. 

B. Impact of Sequence Length on SC NNs
As per the arithmetic features introduced previously, the

performance of SC designs is closely related to the 
sequence lengths. The error of an SC implementation 
originates from multiple sources: quantization error, 
random fluctuations, and correlation. The sequence length 
directly affects the quantization error, which is the primary 
error source, thereby significantly influencing the precision 
of an encoded value.  

Consider an SC MLP with 6 layers with a size of 784-
1024-1024-512-256-10 for the dataset Fashion-MNIST 
using the designs of [25] as an example. We have presented 
a simulation for the given network structure; the results are 

presented in Table I, and they show the effects of the 
sequence length on an SC MLP by two metrics: the 
averaged mean squared error (MSE) and the accuracy loss; 
those metrics are calculated using the conventional FP 
version with the same network configurations as the 
baseline. The MSE measures the absolute error caused by 
SC arithmetic compared with a traditional FP 
implementation in the critical MAC units in forward 
propagation. The values of layer outputs are within the 
range of [-1.78, 1.82], and the MSE results are averaged 
over all layers. The inference accuracy on 10,000 images 
from the validation sets is also presented to measure the 
overall performance of the network. The results show that 
the low MSE of the SC version with large sequence lengths 
leads to similar accuracy as the single-precision FP version; 
the degradation becomes more obvious with smaller 
sequence lengths, highlighting the step from 256 to 128 bits, 
where the accuracy decreases by a factor of 5.  

Table I also shows overhead metrics, the energy and the 
number of cycles, for the SC MLP with Fashion MNIST 
operating at 1 GHz; the design is implemented using 
Verilog HDL and synthesized using Cadence Genus at a 32 
nm technology node; the timing constraint is set to 1 ns. As 
per these results, large sequence lengths cause high energy 
dissipation and more cycles (or equivalently more latency) 
because the stochastic sequences are computed in a bit-by-
bit fashion. Moreover, these overheads scale almost linearly 
with the sequence length, as shown in Table I; such 
dependency could be exploited in the proposed ASL 
scheme to achieve significant latency/energy savings.  

C. Existing Mixed-precision Quantization and
Opportunities for SC NNs

Typically, the use of longer sequence lengths (in SC) or 
more complex data formats (in conventional FP) achieves a 
higher computation precision, but the hardware overheads 
also increase. However, for some applications that can 
inherently tolerate a small deviation in values (such as NNs), 
high precision may not be required for all computation 
modules; an adjustable computation precision could be 
employed to reduce hardware overheads while retaining 
satisfactory system performance. This has been investigated 
for NNs with FP computation by employing mixed-
precision quantization inference [26], [27]. However, the 
mathematical parameters search and quantization-aware re-
training require huge computational resources; for example, 
over 30x the time of the original forward propagation is 
needed [26]. Therefore, those applications could be limited 

TABLE I 
PERFORMANCE OF SC MLPS WITH DIFFERENT SEQUENCE LENGTH FOR 

FASHION-MNIST 
Sequence 

Length (bits) 
Average 

MSE 
Accuracy 

Loss #Cycles Energy 
(mJ) 

1024 9.76e-5 0.02% 5125 7.63 
512 1.38e-3 0.04% 2565 3.82 
256 4.82e-3 0.11% 1285 1.91 
128 1.03e-2 0.52% 645 0.95 
64 8.01e-2 1.01% 325 0.48 
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in a practical context, especially for resource-constrained 
IoT platforms. 

Similar approaches have not been investigated for SC 
NNs to further improve hardware efficiency; moreover, 
they have a large potential to achieve significant advantages 
by considering the features of SC. From the data 
representation perspective, the adjustment of sequence 
length can be easily performed by truncation. Note that all 
bits in an SC sequence are equivalent, and the encoded 
value 𝑠  is not changed after truncation in terms of 
mathematical expectation. As per the Law of Large 
Numbers, when the sequence is sufficiently long, the 
truncated part (if randomly chosen) still reflects the 
proportion of “1”s in the entire sequence [19]. This means 
that any part of a random sequence contains “1”s and “0”s 
in a similar proportion, reflecting the statistical 
characteristics of the entire sequence; further analysis and 
verification of the impact of sequence truncation are 
provided in Section IV.E.  

From the perspective of hardware implementation, the 
conversion between different data precision in SC (i.e., 
sequence truncation) does not require any additional 
conversion unit due to the reasons discussed above. 
Moreover, the SC arithmetic circuits can be reused when 
applying different sequence lengths.  

These advantages make the mixed-precision quantization 
principle for SC NNs very flexible and efficient. Therefore, 
an ASL scheme is proposed in this paper based on mixed-
precision quantization; its benefits are expected to further 
address the issue of NN implementations for energy-
constrained/high-performance platforms in which a 
traditional SC design may still incur considerable energy 
dissipation or latency. 

III. THEORETICAL ANALYSIS

A. SC Truncation Noise Model and Assumptions
In conventional FP NNs, the quantization errors caused

by low bit-width are commonly modeled as additive noise, 
and their accumulation through the layers is analyzed 
accordingly [26]. Likewise, when considering the SC NNs 
with a bitstream truncation scheme, we also encounter 
random fluctuations introduced by shortened bitstreams; 
these fluctuations propagate through the network layers and 
may degrade accuracy. Although both scenarios generate 
noise, their mechanisms differ slightly: SC depends on 
statistical fluctuations due to insufficient sample sizes, 
while FP relies on increased quantization errors due to 
larger intervals. Unlike the FP format, which involves 
distinguishing between high/low bits or exponent-mantissa 
segments, SC encodes values using bitstreams in which 
every bit is equally significant. Once the bitstream length 𝐿 
is reduced, the only consequence is an increase in output 
variance; the representation grows roughly in inverse 
proportion 𝑉𝑎𝑟 ∝ 1/𝐿 , rather than dealing with the 
exponent shifting or the mantissa clipping in FP formats.  

To quantitatively evaluate the accumulation of these 
fluctuations in a multi-layer network, we use a model-based 

method on local linearity and independent noise, this has 
also been applied to FP quantization analysis [26]. The local 
linearity is based on the small perturbation assumption, 
which states that any truncation or quantization noise 
remains sufficiently small compared to the typical neuron 
activations, making it feasible to approximate the activation 
function 𝑓(∙) by a first-order Taylor expansion. The second 
assumption enables us to treat the errors as independent 
additive noise. If the correlation between bitstreams can be 
managed (by Sobol sequence or other random sources), the 
truncation-induced errors in different layers can be viewed 
as independent with zero means. Under these assumptions, 
we can apply the superposition principle to analyze the 
effects of the noises in each layer on the final output.  

Consider the 𝑘 -th fully connected layer with weight 
matrix 𝑊% and 𝑏% and activation function	𝑓%(∙).	Its output is 
given by 

𝑦% = 𝑓%(𝑊%𝑦%$! + 𝑏%). (1) 

If we only introduce a small truncation noise 𝑟&@  into the 
𝑘-th layer’s weights, yielding 𝑊%A = 𝑊% + 𝑟&@, the updated

output can be written as 𝑦%B = 𝑓% CD𝑊% + 𝑟&@
E𝑦%$! + 𝑏%F. 

Provided that 𝑟&@  is sufficiently small, we can approximate 
it by 

𝑦%B ≈ 𝑦% + 𝐽%(𝑦%$!)𝛿%,						𝛿% ∝ 𝑟&@, (2) 

where 𝐽%(∙)  is the Jacobian evaluated at 𝑊%𝑦%$! . When 
multiple layers have zero means, mutually independent 
noise terms J𝑟&K

L, the resulting perturbations to the final 
output 𝑍  can be treated in an approximately additive 
fashion. In variance terms, we have 

𝑉𝑎𝑟D∑ 𝑟'K( E = ∑ 𝑉𝑎𝑟D𝑟'KE( . (3) 

This is very much analogous to FP quantization, in which 
quantization errors are likewise modeled as additive noise. 
The key difference is that in SC, the truncation noise 
depends inversely on the bitstream length 𝐿, while in FP 
arithmetic, the reduction of the bit-width leads to an 
exponentially larger quantization step size. 

B. Layer Noise Amplification Capacity
Based on the above assumptions of small perturbations

and independent noise, we can not only analyze noise 
accumulation throughout the network, but also further 
examine the amplification capacity of each layer during 
noise propagation. This paper uses the concept of the 
operator norm from adversarial robustness in NNs [28], 
[29]. Specifically, the 𝑙" operator norm of each layer’s 
weight matrix 𝑊% quantifies the worst-case amplification 
factor that the layer can apply to an input vector, i.e., 

‖𝑊%‖" = max
)*+

‖&@)‖T
‖)‖T

, (4) 

which is equivalent to the largest singular value of 𝑊% . 
Under the assumptions in Section III.A, the SC truncation 
noise can be regarded as a slight deviation on a linear 
mapping; therefore, if the input is contaminated by noise 
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with norm ‖𝛿‖; the worst-case scenario is that the layer 
amplifies it to ‖𝑊%‖‖𝛿‖. The 𝑙" operator norm provides a 
concise upper bound 𝐹 = ‖𝑊%‖  when measuring the 
amplification of the noise at a given layer. 

The amplification capacity of the activation functions 
should also be considered. For the STanh (as applied in this 
paper and mathematically equivalent to Tanh), the worst-
case amplification factor does not incur any additional 
increase (the maximum gradient value can be taken as 1 
with inputs centered around 0); therefore, the single-layer 
amplification factor with STanh can still be represented as 
𝐹 = ‖𝑊%‖. 

In a multi-layer network, the amplification of noise in 
each layer occurs sequentially, such that the overall effect 
is approximately the product of the operator norms of the 
layers. Therefore, if the truncation noise 𝑟&K is injected at 
the i-th layer, the amplification upper bound from the i-th 
layer to the output layer 𝐾  is approximately 𝐹- =
∏ ‖𝑊%‖.
%/( . As per the SC scenario, the magnitude of the 

truncation noise 𝑟&K  scales as ~1/𝐿  with the sequence 
length 𝐿 . The theoretical upper bound on the noise 
amplitude at the final output can be expressed as 

Y𝑟'KY ≲
!
#
∏ ‖𝑊%‖.
%/( . (5) 

If one or more layers exhibit large ‖𝑊%‖ values, even a 
slight truncation noise introduced in the early layers can be 
repeatedly amplified by the subsequent layers, resulting in 
significant errors in the output. Therefore, layers with larger 
accumulated amplification factors are more sensitive to SC 
truncation and they generally require longer bitstreams. 

According to the analysis, we present theoretical results 
of each layer’s amplification factors (𝐹) as well as their 
cumulative effect (𝐹-) when cascaded towards outputs in 
Table II. The simulations in this paper apply to SC MLPs 
the datasets Fashion-MNIST [31], SVHN [32], and 
CIFAR10 [33]. In this part, a 6-layer fully connected 
network is analyzed as an example, and the analysis focuses 
on the first 5 layers (excluding the output layer). More 
implementation details are provided in the evaluation 
(Section V).  

The accumulated amplification factors indicate that if 
noise is injected at the very first layer (Layer1), it can be 
cumulatively amplified hundreds of times at the final output 
(in the worst case), whereas the accumulated amplification 
factor of subsequent layers (such as Layer5) is rather small. 
This suggests that the early layers of the network are more 
sensitive to input noise, so when implementing the SC 
truncation strategy, special attention should be paid to 
ensuring the stability of these early layers. 

Although the theoretical analysis provides accumulated 
amplification factors for noises occurring in each layer, 
these are merely worst-case estimates based on idealized 
assumptions. In practical applications, the sensitivity of 
each layer to SC truncation is often affected by many non-
ideal conditions. Therefore, the next subsection focuses on 

an experimental analysis to evaluate the sensitivity of each 
layer and compare it with the theoretical results. 

C. Sensitivity Analyses
To quantitatively measure which layer is more sensitive

to SC truncations, we refer to the approach in [26]: inject 
varying strengths of truncation noise solely into one layer 
(the 𝑖-th layer), then measure the accuracy drop Δ011  and 
record the resulting perturbation 𝑟'K  in the final output 
vector 𝑦%. Under the small-noise assumption in (2), 𝑦%B ≈
𝑦% + 𝑟'K , then the magnitude Y𝑟'KY can be correlated with 
the observed Δ011 . When Δ011 reaches a chosen threshold, 
we identify the sensitivity (or defined as “importance”) of 
that particular layer. If a relatively small noise Y𝑟'KY can 
trigger a noticeable accuracy drop, it implies that this layer 
notably amplifies errors through subsequent propagation 
and thus, it warrants higher precision. Conversely, a layer 
capable of tolerating a larger Y𝑟'KY  without major 
performance degradation allows for more aggressive 
truncation.  

However, the method in [26] is limited because it only 
measures the effect when a single layer is truncated. 
Therefore, in this paper, we extend this approach using a 
more comprehensive method. The simulation uses the ASL 
scheme and grid search over all proper configurations 
(combinations of sequence lengths) by recording their 
accuracy. In this case, the effects of simultaneously 
truncating multiple layers can be clearly reflected in the 
output Δ011 . Different from directly looking at the 
importance by Y𝑟'KY , our approach involves multiple 
factors; therefore, a regression model using an RF is applied 
to evaluate the effect of the sequence length of each layer 
on the inference accuracy (or the importance of each layer). 

For comparison purposes, the network structure and 
configurations are identical to the ones applied in Section 
III.B. The configuration of sequence lengths can be denoted
as [𝐿!, 𝐿",⋯ , 𝐿%$!] , 𝐿( < 𝐿 ; for example, with the full
sequence length of 𝐿 = 2!+ , a proper range of truncated
lengths can be set to vary as 𝐿( ∈ [22, 2!+].

In the RF model, the input features are the lengths of each 
layer, and the target value is the corresponding accuracy. 
With 100 trees, the importance of each feature (sequence 
length of different layers) is evaluated by its contribution to 
entropy. For example, if the truncation in the 𝑖 -th layer 
leads to more reduction in the entropy for most tree nodes 
than other layers, then it is defined to have a so-called larger 

TABLE II 
THEORETICAL RESULTS OF AMPLIFICATION FACTORS 𝐹 AND 

ACCUMULATED AMPLIFICATION FACTORS 𝐹-	IN SC MLP 
Datasets Layer1 Layer2 Layer3 Layer4 Layer5 

Fashion 
MNIST 

𝐹 3.60 2.20 2.19 2.49 2.63 
𝑭𝑨 114.54 31.75 14.47 6.58 2.63 

SVHN 𝐹 4.63 4.55 3.26 2.55 2.39 
𝑭𝑨 422.83 91.22 20.01 6.13 2.39 

CIFAR10 𝐹 4.05 3.64 2.76 2.47 2.86 
𝑭𝑨 290.10 71.59 19.61 7.09 2.86 
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importance factor. The importance of all layers is 
normalized so that their sum is equal to 1; hence, we can get 
the importance of each feature (the sensitivity of the layers 
in terms of sequence lengths) as shown in Fig. 3. It shows 
the impact of truncation at different layers on the inference 
accuracy; a higher importance reflects that the truncation of 
the specified layer potentially leads to a larger accuracy 
degradation. Compared to the method in [26], which injects 
noise through truncation in only a single layer, the proposed 
RF method not only reveals the isolated impact of 
truncation on an individual layer, but also learns the 
cumulative contribution of each layer to the final accuracy 
under simultaneous multi-layer truncation scenarios. 

 The results show that the sequence length of the early 
layers contributes the most to the inference accuracy. We 
have also simulated different networks and layer sizes of SC 
MLPs, and there are no obvious changes in the above 
conclusion. The first two layers contribute more than 80% 
to the inference accuracy; this indicates that the network is 
more sensitive to truncation in early layers. The conclusion 
is consistent with the theoretical analysis in Section III.B, 
showing that early layers are more sensitive to truncation 
due to accumulation effects. By the results in Table II, we 
can estimate the “theoretical importance” of the 𝑖-th layer 
simply by 𝑭𝑨,𝒊/∑ 𝑭𝑨,𝒌𝐾

𝑘=𝑖 . If we compare the results in Fig. 3 
with the “theoretical importance” calculated by the 
accumulated amplification factor listed in Table II, the 
importance of the first layer for Fashion-MNIST (66.45%) 
is similar to the theoretical estimation (67.38%) in Table II; 
while that importance for SVHN/CIFAR10 
(65.33%/57.81%) is lower than the calculated values in 
Table II (77.92%/74.14%). The difference indicates that 
non-ideal conditions in practice do not perfectly follow the 
assumptions in theory. Also, in extreme cases, such as 
applying very short sequence lengths (< 64 bits), the small-
perturbation assumption and linear approximations may not 
be valid (even though these setting are uncommon in 
practice due to severe accuracy loss). Therefore, the next 
subsection provides an experiment-based analysis; it is 
necessary to design proper truncation strategies based on 
both theoretical and empirical sensitivity analysis. 

D. Savings in Latency and Energy
Savings in latency and energy are also critical factors

when selecting the truncation strategy. This part estimates 
the savings in these overheads by applying the proposed 
ASL scheme. As discussed in Section II.B, the latency and 
energy are approximately proportional to the sequence 
length in the SC implementations. In a pipelined 
architecture, MAC units and the sequence generation by 
SNGs operate concurrently, so allowing the analysis to 
concentrate only on the changes within the sequence 
generation process. As for latency, it is not related to layer 
size, because all computations within a layer are performed 
in parallel. By contrast, energy consumption correlates with 
layer size due to the computational load expanding with 
more neurons. The saving in energy 	𝑆𝑎𝑣𝑖𝑛𝑔?  (latency, 
	𝑆𝑎𝑣𝑖𝑛𝑔# ) can be approximated by the ratio of energy 
(latency) for the full model 𝐸𝑒𝑛𝑟𝑔𝑦@ (𝐿𝑎𝑡𝑒𝑛𝑐𝑦@) and the 
ASL version  𝐸𝑒𝑛𝑟𝑔𝑦-A# (𝐿-A#): 

	𝑆𝑎𝑣𝑖𝑛𝑔# = 1− #0BCD1Efgh
#0BCD1Ei

= 1 −
∑ #K
@jk
Klk
(%$!)#

, (6) 

	𝑆𝑎𝑣𝑖𝑛𝑔? = 1− ?CDHIEfgh
?CDHIEi

= 1 −
∑ #KDKDKmk
@jk
Klk
∑ #DKDKmk@jk
Klk

, (7) 

where 𝐿 denotes the original sequence lengths of a k-layer 
full model (identical for all the layers) and 𝐿(  is the 
sequence lengths of the corresponding truncated layers. 𝑛( 
is the feature size of the i-th layer in the network. 

By the above equations, the expected savings in latency 
and energy are both related to the sum of the sequence 
lengths of all layers. The strict trade-off mentioned in 
Section II.B limits the use of small sequence lengths, so it 
is critical to arrange the configuration in each layer. 
Furthermore, the saving in energy benefits more from 
truncating the sequences in layers of large size, so those 
layers are more worthy of truncation. Note that (6) and (7) 
only consider the savings by layer sizes without extra 
factors such as hardware optimization and parallelization 
overheads. It only serves as a baseline calculation, while 
Section V compares the theoretical results (Table III) with 
an actual hardware evaluation (Table IV). This 
demonstrates how practical designs may introduce slight 
deviations from the ideal theoretical savings. 

(a)     (b)    (c) 
Fig. 3. The importance of the sequence length of each layer in a SC MLP on the inference accuracy. The results are evaluated by random forest on grid 
search over all the possible configurations with dataset: (a) Fashion-MNIST; (b) SVHN; (c) CIFAR10. 
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IV. PROPOSED ADJUSTABLE SEQUENCE LENGTH (ASL)
SCHEME 

This section first introduces in detail the proposed ASL 
scheme with its implementation steps. The truncation 
strategy for the proposed ASL scheme is then discussed, 
which is critical to assess the trade-off between accuracy 
and energy/latency.  

A. Overall Approach
The basic principle of the ASL scheme is to reduce the

SC sequence lengths in the computational units; this can be 
realized by truncating the full model and inputs during 
inference.  

Consider a full model of a k-layer SC MLP with sequence 
length 𝐿  as an example. The layer-wise computation 
includes the inputs of the 𝑖-th layer and the weight matrices 
between the 𝑖 -th layer and the (𝑖 + 1) -th layer; the 
truncated sequence length of this computation is labeled as 
𝐿(. The output layer is not involved in computations, so the 
ASL scheme considers the first 𝑘 − 1  layers; the 
configuration of the sequence lengths of each layer can be 
represented as [𝐿!, 𝐿", ⋯ , 𝐿%$!]. 

Since all bits in an SC sequence are equivalent, 𝐿( bits 
are randomly sampled from the original sequence of a full 
length 𝐿 to form the truncated sequence. The ASL scheme 
applies truncation to both the weight matrices and the inputs. 

During inference, the inputs of each layer are directly 
truncated without regeneration. For the weight matrices, the 
truncation processes are slightly different when considering 
the format of the full model:  
1) If the full model is stored in SC format, direct

truncation can be applied to the weights.
2) If the full model is not stored in SC format, for example

in single-precision FP format, the weights need to be
converted into SC format. This can be realized by the
SNGs using truncated Sobol sequences.

Directly truncating the generated SC sequences and 
truncating Sobol sequences before SNGs are 
mathematically equivalent; the use of truncated Sobol 
sequences requires lower memory and computational 
overheads. The forward propagation is then computed with 
the layer-wise truncated weights/inputs according to the 
configuration of the sequence lengths. The proposed ASL 
scheme is illustrated in Fig. 4, and the flowchart execution 
of employing it for a given layer is shown in Fig. 5. The 
truncation strategy, which is the critical part of the ASL 
scheme, is further discussed in the next subsection.   

B. Truncation Strategy: General Principles
The selection of the truncation strategies relies on

distinguishing features of different layers in network 
propagation. Even though there is no related research on SC 
NNs, the strategy can partly refer to the studies in mixed-
precision quantization for FP NNs; for example, [26] and 
[27] calculated the optimal bit-width of each layer by
numerical methods. As described in the theoretical analysis
in Section III, layer-wise quantization shares its core
principle with the ASL scheme, as both approaches seek to
reduce overheads by compromising on arithmetic precision.
Their findings provide valuable insights; however, due to
considerable differences in tasks and arithmetic (as
mentioned in Section III), the truncation strategy for SC
NNs requires both a dedicated analysis and simulation-
based experiments.

The theoretical estimation in Section III.B and the 
empirical sensitivity analysis in Section III.C offer a clear 
view of the distinct characteristics of each layer in SC NN. 
It highlights the importance factor of the layers, showing 
the impact of their sequence lengths on the accuracy 

Fig. 4. The proposed ASL scheme with an FP16 full-precision base model. Weights are generated from truncated Sobol sequences, and the inputs of 
each layer are directly truncated to align with the format of the corresponding weights. 

Fig. 5.  Flowchart of the proposed ASL scheme in an SCNN layer. 
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degradation. The conclusion is that the network is more 
sensitive to the truncation in early layers. 

While the proposed operator norm analysis theoretically 
shows that the noise injected into early layers can be 
cumulatively amplified, additional structural and functional 
factors also reinforce this conclusion. Earlier layers 
typically carry out the essential feature extraction from the 
raw inputs: if these basic features are modified by 
truncation noise, subsequent layers will struggle to recover 
lost information. Moreover, many networks maintain a 
larger number of neurons or parameter sizes in earlier layers, 
allowing a stronger capacity for feature learning but also 
potentially creating a larger amplification factor. Later 
layers often have lower dimensions and operate on more 
abstract representations, hence being inherently less 
sensitive to truncation errors. Therefore, these factors in 
network design (core roles in feature extraction, differences 
in layer sizes, and hierarchical abstractions) converge with 
our theoretical estimate of accumulated noise amplification 
to explain the reasons by which early layers exhibit higher 
sensitivity to SC truncations. 

According to the above discussions, the ASL scheme can 
apply a general consideration of truncation strategies: 
Preserve the full sequence length in early layers (closest to 
the inputs) while truncating the latter layers (closer to the 
outputs). This strategy focuses on reducing the overheads 
of SC NNs at a very much reduced accuracy loss compared 
to the full-precision model. Based on this principle, we 
introduce two distinct truncation strategies, a coarse-
grained approach and a fine-grained approach, tailored to 
different application scenarios. 

By the theoretical analysis in Section III, we can also 
intuitively infer how the truncation strategy should be 
modified with network architecture and data characteristics. 
Increasing the network depth generally amplifies truncation 
noise introduced in the early layers, due to the cumulative 
multiplication effect through successive operator norms. 
Likewise, higher data complexity (e.g., high-resolution 
images or multi-channel inputs) forces earlier layers to 
retain more detailed feature information. Consequently, in 
both scenarios, a more fine-grained scheme (that is 
discussed in the next subsections) is often needed to 
preserve enough precision.  

In this paper, we only consider the implementation of 

ASL in small-scale NN architectures, because for large-
scale models such as transformers SC implementations may 
remain uncommon due to stringent latency and hardware 
constraints. A full quantitative exploration of the guidance 
of complex network topologies and diverse data 
distributions on layer-wise truncation is left for future work. 

C. Coarse-grained Truncation Strategy
For the datasets and applications with no prior

information, we can apply a coarse-grained truncation 
strategy; this applies generalized configurations that have 
satisfactory performance in most of the tasks. Based on the 
findings from the sensitivity analysis, the early layers of the 
network are critical for maintaining accuracy; therefore, to 
minimize degradation, truncation within the ASL scheme 
should primarily target the latter layers. 

The use of the coarse-grained strategy depends on the 
general conclusion of sensitivity analysis in Section III.C. 
Assuming the original sequence lengths are equal  𝐿 in each 
layer of a baseline SC model, the ASL scheme keeps the 
first layer unchanged and truncates the remaining layers. 
The ratio of truncation can be approximately determined by 
the sensitivity analysis in Fig. 3, for example, the 
importance of the second layer falls in the range of [1/4, 1/2] 
of the importance of the first layer. Since the length of the 
stochastic sequence is typically in the form of a power of 2, 
we select the factor of 1/2 as a generalized truncation 
strategy (taking the upper bound as a safe choice to preserve 
accuracy). Similarly, we can further truncate the remaining 
layers by a similar approach, and the general strategy can 
be averaged considering the results from all the datasets. 
Therefore, the overall coarse-grained truncation strategy 
can be represented as [𝐿, 𝐿/2, 𝐿/4,⋯ , 𝐿/4] . Once the 
sequence length 𝐿 is determined, the theoretical savings in 
energy and latency can be calculated by (6) and (7). The 
performance of this generalized ASL configuration is 
evaluated in Section V. 

D. Fine-grained Truncation Strategy
While the generalized truncation strategy is effective in

many scenarios, it may not always provide an optimized 
balance between accuracy and energy/latency savings. To 
enhance performance, a fine-grained truncation approach 
can be applied. Testing a wide range of configurations on a 
large dataset can be costly, thus, employing a smaller, 

(a)     (b)    (c) 
Fig.6. Illustration of the relationship between accuracy loss and savings (ratio) of energy and latency when applying the ASL scheme on dataset: (a) Fashion-
MNIST; (b) SVHN; (c) CIFAR10. The points denote configurations with different truncation strategies.   
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randomly selected subset is a practical solution. This subset 
can be treated as statistically representative of the entire 
dataset during inference, so allowing for the identification 
of consistent patterns. Cross-validation confirms that the 
fine-grained strategy is effective across both subsets and the 
complete dataset.  

Utilizing a grid search to explore all viable 
configurations of sequence lengths on the chosen subset 
allows for detailed tracking of the accuracy loss. The 
implementation of the sensitivity analysis as preliminary 
knowledge can enhance efficiency, such as by maintaining 
a constant sequence length for the critical first layer to 
reduce the computational demands in the grid search. For 
each configuration, the expected savings in energy and 
latency can be calculated by (6) and (7). The results are 
illustrated in Fig. 6, in which the point with 100% savings 
in both energy and latency indicates the baseline no 
accuracy loss. We can observe similar patterns showing the 
trade-off between accuracy loss and savings. Notably, 
certain configurations stand out by offering substantial 
savings while reducing the accuracy loss. 

The score for the savings can be calculated as 

𝑠𝑐𝑜𝑟𝑒 = 		𝛼𝑆𝑎𝑣𝑖𝑛𝑔? + (1 − 𝛼)	𝑆𝑎𝑣𝑖𝑛𝑔#, (8) 

where 𝛼  is the weight balancing the importance of the 
energy and latency savings; it can be determined by the 
requirement of specific implementations, for example, this 
paper applies 𝛼 = 0.5 for identical importance of the two 
terms. For a given threshold of accuracy loss (Δ011 <
0.1%), it is possible to find the configuration corresponding 
to the point that achieves the highest score. Such 
configuration can be applied as the fine-grained strategy of 
the ASL scheme.  

Therefore, the fine-grained strategy can be summarized 
in the following algorithmic steps: 
1) Randomly select a subset from the given dataset.
2) Grid search by inferencing all possible configurations

(with a proper range of truncated lengths such as 𝐿( ∈
[22, 2!+]) over the selected subset and recording the
corresponding accuracy loss. The conclusions from the
sensitivity analysis can be applied to reduce candidate
configurations to evaluate.

3) Calculate the expected savings in energy and latency
by equations (6) and (7).

4) Determine the overall score of the configurations by
equation (8).

5) For a given threshold of accuracy loss, find the
configuration achieving the highest saving score.

According to previously presented simulation results, the 
configuration selected by such a process is expected to 
achieve a better performance than the coarse-grained 
strategy during the inference of full datasets. A detailed 
evaluation of the fine-grained truncation strategy is 
presented in Section V. 

E. Implementation of RNGs
The ASL scheme can be realized by applying truncated

Sobol sequences in the SNGs. This subsection details the 

implementation of the RNGs, hence justifying the use of 
Sobol sequences. To achieve accurate computation, SC 
arithmetic requires an adequate length for the stochastic 
sequences involved. Since the proposed ASL scheme relies 
on truncated stochastic sequences, low correlation must be 
preserved after truncations.  

 RNGs in SC NNs are usually implemented by LFSRs or 
Sobol sequences. An LFSR is a streamlined technique for 
pseudo-random number generation, utilizing a basic binary 
shift register and linear feedback rules based on a specific 
polynomial. Its simplicity allows for the fast generation of 
pseudo-random sequences with desirable statistical 
properties. As used for generating quasi-random sequences, 
Sobol sequences differ from LFSRs because they prioritize 
the uniform distribution across multi-dimensional spaces. 

 When implementing the ASL scheme with truncated 
stochastic sequences, the application of a LFSR is limited. 
As directly truncated stochastic sequences are equivalent to 
stochastic sequences produced from truncated random 
sequences, Fig. 7 provides its intuitive illustration: the 
original random numbers generated by the LFSR (with a 
length of 1024) exhibit satisfactory statistical properties 
(they can be guaranteed by well-selected polynomials and 
seeds). However, truncation disrupts the uniform 
distributions (Fig. 7 (b), (c), and (d)), with the deviation 
intensifying as the length of the truncated sequences 

(a)    (b) 

(c)                                                      (d) 
Fig. 7. Distribution of pseudo-random numbers generated by an LFSR 
truncated to a length of (a) 1024 (original); (b) 512; (c) 256; (d) 128. 

(a)                                                      (b) 
Fig. 8. Comparison of SC MLPs with truncated and directly generated 
sequences using LFSR or Sobol as RNGs: (a) Averaged MSE; (b) 
Accuracy Loss. Fashion-MNIST is used and the results are calculated 
using the single-precision FP implementation as baseline. 
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decreases. By contrast, Sobol-generated SC sequences 
maintain a consistent advantage due to their strict inherent 
uniform distribution [21], irrespective of truncation; 
therefore, Sobol sequences are the preferred choice for 
RNGs in the ASL scheme.  

 Next, an evaluation by simulation can be used to 
intuitively compare the performance of those two cases of 
SC MLPs. The stochastic sequences generated by truncated 
LFSR/Sobol sequences are compared with those generated 
by directly produced LFSR/Sobol sequences, encoding 
identical values (the latter approach can employ proper 
seeds, so it can always ensure low correlation). Like in 
Section II.C, the MSE of an SC implementation in the 
critical MAC units and the accuracy loss of SC NN are 
evaluated by comparing them with the traditional single-
precision FP implementation. The results for dataset 
“Fashion-MNIST” in an MLP with an identical 
configuration as in Section II.C are presented in Fig. 8 as an 
example (the original stochastic sequence length before 
truncation is 1024).  

The results indicate that the LFSR version suffers a large 
difference between the truncated version and the directly 
generated version, confirming its inadequacy for the 
truncation scheme as previously concluded. However, the 
Sobol-based truncated SC sequences show MSE and 
inference accuracy levels comparable to those of the 
directly generated sequences (with the same length and 
encoded values). This confirms the feasibility of the 
proposed scheme: when truncated Sobol sequences are 
utilized in RNGs, the ASL emerges as an effective strategy, 
achieving negligible degradations in overall performance. 

V. PERFORMANCE EVALUATION

This section conducts simulations to assess the 
performance of the ASL scheme with datasets Fashion-
MNIST [31], SVHN [32], and CIFAR10 [33] (one channel 
is used as input for each image in SVHN and CIFAR10). 
For each dataset, the scheme is evaluated by the validation 
set with 10,000 images. The SC MLPs are implemented 
based on the design of [25]; STanh is applied as the 
activation function, and MLPs with different sequence 
lengths are trained as baseline models. For the coarse-
grained truncation strategy, this paper uses the 
configuration [𝐿, 𝐿/2, 𝐿/4,⋯ , 𝐿/4]	as discussed in Section 
IV.III.

When applying the fine-grained truncation strategy and
for comparison purposes, the threshold of the accuracy loss 
is set to be the same as the coarse-grained strategy. The 
configurations with the best performances are selected 
based on the pattern tested on a subset with 5% size of the 
original dataset. The detailed configurations of the 
sequence length in each layer are presented in Table III. 

A. Implementation of SC NNs
Before conducting the evaluation, the hardware

implementation of SC NNs considered in this paper is 
described. As introduced in Section II.A, the 

implementation of SC NNs mainly includes the circuits for 
performing MAC and the activation function. Fig. 9 (a) 
shows the design for a layer propagation. Different from the 
direct inputs in traditional FP networks, the inputs of SC 
need SNGs to generate uncorrelated stochastic sequences. 
To implement the MAC, a network of XNOR gates is 
required to perform multiplication between the stochastic 
sequences generated for the inputs and their related weights; 
then, the adder tree accumulates these SC products based on 
a multiplexer tree; the adder tree contains a pipeline stage 
to meet the tight timing constraints. By moving forward in 
the adder tree, the number of adders in each level decreases; 
therefore, the pipeline stage is placed from the output side 
to decrease the complexity of the sequential logic.  

For implementing the activation function, a stochastic 
approximation to Tanh (STanh) is utilized after the ESL-
based MAC process. It is implemented using a LFSM as the 
design proposed in [23]. The use of the clock in the LFSM-
based activation function introduces a further sequential 
logic in the design to perform as another level of pipelining. 

 For the SNG implementation, this paper applies the 
Sobol sequence to maintain a low correlation as discussed 
in Section IV.E. The RNG, i.e., the Sobol sequence 
generator, is designed according to the scheme presented in 
[21], [24]. As shown in Fig. 9 (b), its hardware design 
includes a counter for generating index i and then a priority 
encoder for generating the signal m according to the index 

  (a) 

  (b) 
Fig. 9.  The hardware design of an SC NN: (a) implementation of the 
layer propagation including SNGs, MAC with a pipelined adder tree and 
activation function; (b) the Sobol sequence generator (i.e., RNG) in an 
SNG. 
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and its leading zero position. Signal m represents the 
required vector’s (𝑉J) address that is saved in the Look Up 
Table (LUT) beforehand. The final Sobol sequence is 
obtained after reading this vector and XORing it with the 
Sobol sequence generated in the previous cycle (𝑞($!). Such 
Sobol sequence is then compared with the comparator in the 
SNG to generate the stochastic sequence.  

The above units have been proven to be efficient for SC 
NN design, and their implementation details are described 
in related works [18], [22], [23]. Based on these units, a 
fully parallel network is implemented, i.e., the operation of 
each neuron in the network is independently performed, 
regardless of the layer. However, this does not imply that a 
neuron’s value is generated in one cycle. Since in SC, the 
final value of a neuron is dependent on the sequence, the 
fully parallel implementation operates on a bit basis of the 
sequence per cycle; therefore, the total latency of the design 
is only related to the sequence length and independent of 
the network size due to the full parallelization. To address 
the critical path delay, if the number of neurons in the 
previous layer (input or hidden layer) is significantly large, 
the number of adder stages for the accumulation design of 
Fig. 9 (a) increases, this causes an increase in total critical 
path delay. To address this delay problem, a pipeline stage 
is inserted from the outer side of the accumulator; this 
scheme also reduces the number of registers, because the 
number of bits is reduced by moving toward the end of the 
adder stages. This scheme may increase the complexity of 
the design, but it improves its performance and can achieve 
a high operating frequency (i.e., 1 GHz in this paper). 
Further details of the parallel SC NN design with pipeline 
can be found in [25]. Such a design is taken as a baseline to 
conduct the hardware evaluation for the proposed ASL 
scheme in Section V.C. 

In the hardware implementation, we employ both 
pipelining and parallel design so that each neuron’s bit-
serial operation can complete within the original 1 ns timing 
constraint. Specifically, even if the network scales up or the 
bitstream is truncated to a different length, the critical path 
does not grow beyond the synthesizable limit. Instead, the 
core logic of each neuron remains confined to one pipeline 
stage, thereby sustaining the same 1 ns clock period. This 
design ensures that the overall latency is linearly dependent 
on sequence length and is not affected by layer sizes; the 
design preserves sufficient timing margins under varying 
network configurations and truncation scenarios. 

B. Theoretical Savings in Latency and Energy
For the strategies proposed in the previous section, we

obtained the coarse-grained and fine-grained configurations 
for SC MLPs with the proposed ASL scheme. For 
comparison purposes, we can first estimate the savings by 
the given strategies to confirm the theoretical analysis 
presented in Section III.D. Table III lists the estimated 
savings in energy and latency calculated by equations (6) 
and (7). The savings in latency are only dependent on the 
sequence lengths, irrespective of the layer size, making 
them consistent across various datasets with the same 
configuration. This consistency is evidenced by the coarse-
grained strategy that delivers the same savings of 55%. The 
savings in energy are related to the layer sizes. Since for the 
proposed scheme it has been suggested to truncate the latter 
layers, then the networks with a smaller first layer tend to 
gain more benefits; hence, Dataset Fashion-MNIST 
achieves a larger energy saving (up to 40.6%) than dataset 
SVHN/CIFAR10 (up to 36.9%) with the same 
configuration. Moreover, the fine-grained strategy allows 
the use of small sequence lengths with specified datasets, 
while satisfying the accuracy threshold; hence, these 
configurations lead to larger savings in both energy and 
latency. As evaluated by a pipelined design, the savings in 
practice are further assessed in the next subsection.  

C. Performance and Hardware Evaluation
The mixed-precision quantization for the FP NNs has

been widely studied and can achieve a significantly larger 
compression rate, such as sub-byte representations with an 
increased accuracy degradation [26], [27]. Given the 
differences between FP and SC in network implementations, 
a direct comparison between truncation strategies of those 
arithmetic is not feasible. While mixed-precision FP papers 
do not typically discuss hardware evaluations, they require 
additional overheads for format conversions, including bias 
adjustments in exponent bits and roundings in mantissa bits 
or a specially designed fused MAC [30]. These overheads 
become more pronounced with frequent layer-wise format 
conversions and larger network sizes. However, as outlined 
in Section II.C, mixed-precision SC strategies can be 
straightforwardly implemented by truncating the same 
stochastic sequences, thereby dramatically reducing the 
conversion overhead.  

This section focuses on highlighting the benefits of 
mixed-precision techniques in SC and assessing the 
network performance with or without the proposed ASL 
scheme. A case study is presented in which the performance 

TABLE III 
THEORETICAL SAVINGS IN ENERGY AND LATENCY BY THE ASL SCHEME (COMPARED TO FULL MODEL WITH L=1024, K=6). 

Dataset Layer sizes Truncation strategy Configuration %Savings in 
energy 

%Savings in 
latency 

Fashion-MNIST 784-1024-1024-512-
256-10 

Coarse-grained [210, 29, 28, 28, 28] 40.6% 55.0% 
Fine-grained [210, 29, 27, 26, 26] 44.2% 65.0% 

SVHN 1024-1024-1024-512-
256-10 

Coarse-grained [210, 29, 28, 28, 28] 36.9% 55.0% 
Fine-grained [210, 29, 28, 26, 26] 37.8% 62.5% 

CIFAR10 1024-1024-1024-512-
256-10 

Coarse-grained [210, 29, 28, 28, 28] 36.9% 55.0% 
Fine-grained [210, 29, 28, 27, 26] 37.6% 61.3% 
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of ASL is evaluated by hardware design. For illustration 
purposes, we set the sequence lengths of the full models to 
𝐿 = 1024. A 1 GHz stochastic MLP [25] is designed using 
Verilog HDL and synthesized using Cadence Genus at a 32 
nm technology node; the timing constraint is set to 1 ns. The 
results for the SC MLPs with the two ASL truncation 
strategies (with the detailed configurations listed in Table 
III) are presented in Table IV.

In our simulation, the delays are identical (1ns) for
neurons with different SC lengths (as per timing constraint 
in the synthesis process), while the total number of clock 
cycles is proportional to the SC length; therefore, for the 
pipelined design with the same NN topology and truncation 
strategy, the percentage of savings in latency is identical, 
while the percentage of savings in energy is dependent on 
layer sizes. As per Table IV, the ASL scheme with a coarse-
grained truncation strategy achieves energy savings of 
46.59% (42.82%/42.82%) for the dataset Fashion-MNIST 
(SVHN/CIFAR10), and identical savings of 54.95% in 
latency across the datasets. The fine-grained strategy 
achieves larger savings, especially in latency, with a similar 
level of accuracy loss; it achieves energy savings of 49.83% 
(43.64%/43.38%) on Fashion-MNIST (SVHN/CIFAR10), 
and latency savings of 64.94% (62.44%/61.19%) on 
Fashion-MNIST (SVHN/CIFAR10). Overall, the synthesis 
results of latency are very close to the theoretical estimation 
in Table III (the differences are < 0.1%), while the savings 
in energy are larger than the estimated results. The main 
reason is that the power of layer propagation is not strictly 
linear to the layer sizes, leading to a deviation compared 
with the theory in Section III.D. 

The accuracy of SC NNs when employing different 
strategies in the ASL scheme is also evaluated and 
compared. The simulation is performed in Pytorch using the 
functionally equivalent network implementation and results 
are also provided in Table IV. For the full model with a 
sequence length of 𝐿 = 1024, the accuracy loss threshold 
is set to Δ011 < 0.1%  when selecting the fine-grained 
strategies; this is negligible, especially compared with the 
inherent quantization (rounding) errors of SC formats. 

Overall, as per the simulation results, the coarse-grained 
strategy should satisfy the requirement of most tasks; if 
further improvements are required, the fine-grained strategy 
can be applied with some additional costs in improving the 
configurations. In summary, the case study shows 
significant savings in overheads with negligible accuracy 
loss by applying the ASL scheme to SC MLPs, so 

confirming the efficiency of the proposed method in source-
limited applications. 

VI. CONTRIBUTIONS

This paper introduces a novel layer-wise truncation ASL 
scheme. To the best of the authors' knowledge, there is no 
related research on mixed-precision SC implementations. 
The presented work also diverges from traditional FP 
mixed-precision methods by focusing on stochastic 
bitstreams, in which every bit is equally significant. Unlike 
FP quantization, which relies on discrete bit-width 
adjustments often demanding expensive exponent or 
mantissa manipulations, ASL simply truncates bitstreams in 
SC. It significantly reduces the energy/latency overhead 
and maintains adequate precision. This difference is 
particularly relevant to constrained scenarios such as IoT 
and further addresses the advantages of SC with area and 
power limitations.  

Beyond these architectural differences, our work 
presents a unified theoretical and empirical framework. An 
operator-norm–based model captures worst-case noise 
accumulation across layers, highlighting the amplification 
of the truncation noise from early to deeper layers. The 
theory has then been validated with an improved RF-based 
sensitivity analysis that covers multi-layer truncation 
scenarios. By incorporating Sobol sequences instead of 
LFSRs, the proposed scheme ensures that truncated 
bitstreams retain a low correlation, which is an important 
challenge that prior SC works had not thoroughly 
addressed. 

From a practical application perspective, our results 
show that the proposed coarse-grained and fine-grained 
truncation schemes achieve over 60% energy and latency 
savings with negligible accuracy loss, validated on 
hardware synthesized at the 32 nm technology node. As IoT 
devices require small overhead and real-time 
responsiveness, the ability to adjust sequence lengths on a 
layer-wise basis offers a powerful approach for balancing 
efficiency and accuracy. This further facilitates the use of 
SC NNs in edge and embedded systems in which 
conventional FP hardware proves costly. By theoretical 
modeling and hardware evaluation, this paper offers an 
effective approach toward high-performance, low-power 
SC implementations suitable for next-generation IoT and 
other resource-constrained ML applications. 

TABLE IV 
PERFORMANCE OF THE ASL SCHEME IN HARDWARE EVALUATION WITH DIFFERENT CONFIGURATION (COMPARED TO FULL MODEL WITH L=1024). 

Dataset Layer sizes Baseline 
Accuracy 

Truncation 
strategy 

Energy 
(mJ) #Cycles Accuracy 

Loss  
%Savings in 

energy 
%Savings in 

latency 
Fashion-
MNIST 

784-1024-1024-
512-256-10 91.98% Coarse-grained 4.08 2309 0.083% 46.59%  54.95% 

Fine-grained 3.83 1797 0.083% 49.83% 64.94% 

SVHN 1024-1024-1024-
512-256-10 90.42% Coarse-grained 4.75 2309 0.040% 42.82% 54.95% 

Fine-grained 4.68 1925 0.040% 43.64% 62.44% 

CIFAR10 1024-1024-1024-
512-256-10 64.86% Coarse-grained 4.75 2309 0.098% 42.82% 54.95% 

Fine-grained 4.70 1989 0.095% 43.38% 61.19% 
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VII. CONCLUSION AND FUTURE WORK

 This paper has introduced the ASL scheme for SC NNs, 
a novel layer-wise truncation approach that significantly 
reduces the overhead while preserving high accuracy in 
resource-constrained platforms. Through theoretical 
analysis and an extended multi-layer sensitivity evaluation, 
we have shown that noise in early layers can be 
cumulatively amplified, thereby motivating the need for 
maintaining longer bitstreams at those layers.  

 This paper has further proposed two complementary 
strategies, a coarse-grained approach for general tasks and 
a fine-grained grid-search-based approach for scenarios 
requiring tighter trade-offs. By exploiting Sobol sequences, 
this paper has also addressed correlation issues in truncated 
bitstreams, presenting the scheme of layer-wise truncation 
for practical SC implementations. The hardware evaluation 
of a pipelined SC MLP has confirmed that ASL achieves 
significant energy and latency savings (exceeding 60% in 
certain cases) with negligible accuracy degradation. 

Future work is directed to extend ASL to more complex 
architectures such as convolutional or recurrent NNs and 
explore adaptive or dynamic truncation strategies; 
incorporating techniques from traditional FP networks such 
as quantization-aware training can potentially further refine 
the SC truncation scheme. Additionally, investigating 
hardware-aware optimizations would enable a tighter 
integration of ASL into energy-limited devices. This can 
further address the advantages of SC NNs in IoTs and edge 
computing applications. 
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