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Abstract— Stochastic computing (SC) has emerged as an
efficient low-power alternative for deploying neural networks
(NNs) in resource-limited scenarios, such as the Internet of
Things (IoT). By encoding values as serial bitstreams, SC
significantly reduces energy dissipation compared to
conventional floating-point (FP) designs; however, further
improvement of layer-wise mixed-precision implementation
for SC remains unexplored. This paper introduces Adjustable
Sequence Length (ASL), a novel scheme that applies mixed-
precision concepts specifically to SC NNs. By introducing an
operator-norm—based theoretical model, this paper shows that
truncation noise can cumulatively propagate through the
layers by the estimated amplification factors. An extended
sensitivity analysis is presented, using Random Forest (RF)
regression to evaluate multi-layer truncation effects and
validate the alignment of theoretical predictions with practical
network behaviors. To accommodate different application
scenarios, this paper proposes two truncation strategies
(coarse-grained and fine-grained), which apply diverse
sequence length configurations at each layer. Evaluations on a
pipelined SC MLP synthesized at 32 nm demonstrate that ASL
can reduce energy and latency overheads by up to over 60%
with negligible accuracy loss. It confirms the feasibility of the
ASL scheme for IoT applications and highlights the distinct
advantages of mixed-precision truncation in SC designs.

Index Terms—Internet of things, neural network,
stochastic computing, energy efficiency, mixed-precision
inference.

I. INTRODUCTION

Neural networks (NNs) are being increasingly
recognized for their capability to effectively model and
solve intricate problems, with widespread application in
domains including robot control [1], recommender systems
[2], natural language processing [3] and the Internet of
Things (IoT). While efficient parallelized computations of
NNs have been extensively investigated, they often come
with stringent hardware complexity at nanoscales.
Stochastic computing (SC) has emerged as an efficient
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hardware solution at low power for NN implementation [4].
SC NNs are particularly appealing for energy-constrained
platforms due to the low overhead and excellent error
tolerance. They also offer distinct benefits for specific
applications, such as online learning and adaptive inference
fine-tuning [4].

The computational scale of NNs has kept increasing to
billions of parameters as evidenced in recent machine
learning (ML) applications [5]. The demands for these
networks place a significant requirement on energy
dissipation; for tasks with smaller scales, such as IoT
devices, energy efficiency is also crucial due to hardware
and power constraints [6]. ML models have been widely
applied to emerging 6G IoTs and other high-frequency
communications, raising extensive challenges in terms of
computation overhead and energy consumption [7]-[9].
Therefore, IoT devices usually employ compact NNs using
techniques such as quantization or adaptive resolution [10],
[11]. TinyML has focused on running ML models on
devices with limited resources [12], always seeking to
balance performance and efficiency but considerably
reducing accuracy. Other approaches have proposed a
hybrid method, executing predictions on the device except
when performance is not adequate, in which case it is run in
the cloud with more complex versions of the model [13].
Additionally, these applications usually require a fast
response to user interaction and real-time communication
with cloud or parallel devices, so low-latency hardware
implementations are also needed [14].

Due to their efficient arithmetic features, SC NNs are
affected by the stringent trade-off between accuracy and
computational energy/latency [15]. A sufficiently long
sequence is critical for accurate propagation and gradient
updates in the NN; however, increased sequence lengths
result in higher energy usage and latency, with serial
processing of SC bitstreams presenting an approximately
proportional dependency.
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A reduction of the overheads in SC NNs could involve
an intuitive strategy, i.e., using shorter sequence lengths,
but it is crucial to achieve this without significantly
compromising accuracy. When considering a scheme of
mixed-precision inference for traditional FP NNs, various
layers perform unique functions; hence, their impact on the
outputs could be different [16]. Also, research indicates
that layers within NN differ significantly in their ability to
tolerate errors [17], presenting the diverse effects of
quantization errors on layers. However, mixed-precision
inference in SC, or layer-wise adjustable stochastic
sequences, has not been studied; in particular, by employing
appropriate truncation strategies, different sequence lengths
across layers in SC NNs are expected to improve energy
and latency with a small accuracy loss.

This paper proposes an efficient scheme for SC NNs
using an Adjustable Sequence Length (ASL) that is
amenable to IoT applications. By employing layer-wise
adjustable sequence lengths, the scheme contributes to
reducing overheads while keeping a satisfactory accuracy.
With the design directly truncating Sobol sequences in
stochastic number generators (SNGs), ASL avoids
additional costs and possible correlation problems. This
paper evaluates the inference of Multilayer Perceptrons
(MLPs) as per their well-developed SC designs [18], [20].
The main contributions of this paper are:

1) Propose ASL as the first dedicated, layer-wise
truncation scheme in SC NNs, so enabling mixed-
precision inference with reduced design overhead and
high flexibility.

2) Develop an operator-norm-based theoretical model for
accumulated truncation errors and validate it with
random-forest (RF)-based sensitivity experiments.
Evaluate for the first time truncation noise propagation
in multi-layer SC NNs.

3) Justify that Sobol sequences preserve low correlation
under truncation better than LFSR-based SNGs,
bridging a key gap in SC hardware design by ensuring
consistent accuracy even with truncated sequence
lengths.

4) Present two distinct truncation methods for ASL, a
coarse-grained approach for direct deployment and a
fine-grained approach leveraging grid search, for better
configuring layer-wise truncation under different
accuracy-energy/latency trade-off requirements.

5) Confirm that ASL achieves substantial energy and
latency reductions (up to more than 60 % savings) with
negligible accuracy loss by synthesizing a pipelined SC
MLP at 32 nm. Establish practical feasibility for IoT
and other resource-constrained applications.

The rest of the paper is organized as follows: Section II
reviews fundamental SC concepts and highlights the design
features relevant to the proposed ASL scheme. Section III
presents the theoretical analysis, including the noise model,
operator-norm-based amplification factors, and empirical
sensitivity analysis. Section IV proposes the ASL scheme

and details the ASL truncation strategies by discussing both
the coarse-grained and fine-grained approaches. Section V
evaluates the ASL scheme by comparing theoretical
estimates against actual hardware synthesis results, and it
demonstrates the method’s effectiveness in reducing
energy/latency overheads. Section VI discusses the
contributions of this paper. Finally, this paper ends with the
conclusion and future works in Section VII.

II. PRELIMINARIES

A. Stochastic Computing

In SC, a binary bitstream is utilized to represent a number
in conventional digital arithmetic. Consider a L -bit
stochastic sequence S = (S;, S,, -+, S, ); each bit follows an
independent and identical Bernoulli distribution with the
parameter p that can be interpreted as the probability of
observing a “1” in the sequence [15]. The total number of
“1”’s can be represented as the sum of §; + S, +---+ 5, in
a binomial distribution. The encoded value s is represented
by a given stochastic sequence and has two formats:

1) Unipolar representation: A L-bit stochastic sequence
with L' “1”’s encodes a value of L'/L = p. It represents a
value in the range of [0, 1] with data precision of L™1.

2) Bipolar representation: A L-bit stochastic sequence
with L’ “1”’s encodes a value of s = (2L’ — L)/L = 2p — 1.
It represents a value within [—1, 1] with a data precision of
217

Therefore, longer sequence lengths permit a higher
computation precision (as shown in Fig. 1). Also, the
Extended Stochastic Logic (ESL) can be applied to
substantially increase the value range of SC representations
[18]. A number can be represented by the division of two
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Fig. 1. Precision of unipolar multiplication with different stochastic
sequence length (assuming low correlation between two sequences). A
sufficient sequence length is critical to ensure an accurate computation.
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Fig. 2. Diagram of a generic SC system [34]: (a) the overall system; (b)
a stochastic number generator (SNG); (c) a probability estimator (PE).
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stochastic sequences, so it will not be limited to [0, 1] in the
unipolar representation or [-1, 1] in the bipolar
representation. By using the sequences for computation, SC
can significantly reduce the complexity of arithmetic
circuits in hardware implementations; for example, as
shown in Fig. 1, the product of two numbers is simply
computed by an AND gate in the unipolar representation.
Therefore, SC is a promising scheme to implement
computation-intensive systems (e.g., NNs) in which
conventional computations using floating-point (FP)
formats dissipate large power/energy.

Fig. 2 shows the diagram of a generic SC system [34].
When implementing an SC NN, the main difference from
the FP version is that conventional arithmetic modules are
replaced by SC building blocks. Since this paper focuses on
the inference process of NNs, the SC arithmetic building
blocks shown in Fig. 2 (a) mostly include the units for
implementing the multiplication-accumulation (MAC)
process and the activation function. To implement the MAC,
a network of XNOR gates is required to multiply the
stochastic sequences generated for the inputs and their
related weights; then, the adder tree is responsible for
accumulating these SC products based on a multiplexer tree.
A stochastic approximation to Tanh (STanh) is utilized after
the ESL-based MAC process as the activation function. The
above arithmetic units have been proven efficient for SC
NN designs, and their implementation details are described
in related works [18], [22], [23].

In addition to the arithmetic modules, the conversion
circuits must be included in the SC design. As shown in Fig.
2, an SNG is essential for converting input data into
stochastic sequences, and a probability estimator is used for
converting back the sequences. The SNG is generally made
of a random number generator (RNG) and a comparator.
The RNGs can be implemented by a pseudo-random linear
feedback shift register (LFSR) or quasi-random Sobol
sequences [21]. Within the proposed ASL scheme, the
selection of proper RNGs is crucial to ensure low
correlation among truncated sequences. The Sobol
sequence is preferred since it maintains a low correlation
with truncation (as discussed in the subsequent sections).
Further implementation details of the SC NNs and SNGs
considered in this paper are presented in Section V.

B. Impact of Sequence Length on SC NNs

As per the arithmetic features introduced previously, the
performance of SC designs is closely related to the
sequence lengths. The error of an SC implementation
originates from multiple sources: quantization error,
random fluctuations, and correlation. The sequence length
directly affects the quantization error, which is the primary
error source, thereby significantly influencing the precision
of an encoded value.

Consider an SC MLP with 6 layers with a size of 784-
1024-1024-512-256-10 for the dataset Fashion-MNIST
using the designs of [25] as an example. We have presented
a simulation for the given network structure; the results are

TABLEI
PERFORMANCE OF SC MLPS WITH DIFFERENT SEQUENCE LENGTH FOR
FASHION-MNIST

Sequence Average Accurac; Ener
Length (bits) MSEg Loss V| #Cycles (mJ%y

1024 9.76e-5 0.02% 5125 7.63

512 1.38e-3 0.04% 2565 3.82

256 4.82¢-3 0.11% 1285 1.91

128 1.03e-2 0.52% 645 0.95

64 8.01e-2 1.01% 325 0.48

presented in Table I, and they show the effects of the
sequence length on an SC MLP by two metrics: the
averaged mean squared error (MSE) and the accuracy loss;
those metrics are calculated using the conventional FP
version with the same network configurations as the
baseline. The MSE measures the absolute error caused by
SC arithmetic compared with a traditional FP
implementation in the critical MAC units in forward
propagation. The values of layer outputs are within the
range of [-1.78, 1.82], and the MSE results are averaged
over all layers. The inference accuracy on 10,000 images
from the validation sets is also presented to measure the
overall performance of the network. The results show that
the low MSE of the SC version with large sequence lengths
leads to similar accuracy as the single-precision FP version;
the degradation becomes more obvious with smaller
sequence lengths, highlighting the step from 256 to 128 bits,
where the accuracy decreases by a factor of 5.

Table I also shows overhead metrics, the energy and the
number of cycles, for the SC MLP with Fashion MNIST
operating at 1 GHz; the design is implemented using
Verilog HDL and synthesized using Cadence Genus at a 32
nm technology node; the timing constraint is set to 1 ns. As
per these results, large sequence lengths cause high energy
dissipation and more cycles (or equivalently more latency)
because the stochastic sequences are computed in a bit-by-
bit fashion. Moreover, these overheads scale almost linearly
with the sequence length, as shown in Table I; such
dependency could be exploited in the proposed ASL
scheme to achieve significant latency/energy savings.

C. Existing  Mixed-precision and

Opportunities for SC NNs

Typically, the use of longer sequence lengths (in SC) or
more complex data formats (in conventional FP) achieves a
higher computation precision, but the hardware overheads
also increase. However, for some applications that can
inherently tolerate a small deviation in values (such as NNs),
high precision may not be required for all computation
modules; an adjustable computation precision could be
employed to reduce hardware overheads while retaining
satisfactory system performance. This has been investigated
for NNs with FP computation by employing mixed-
precision quantization inference [26], [27]. However, the
mathematical parameters search and quantization-aware re-
training require huge computational resources; for example,
over 30x the time of the original forward propagation is
needed [26]. Therefore, those applications could be limited

Quantization
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in a practical context, especially for resource-constrained
IoT platforms.

Similar approaches have not been investigated for SC
NNs to further improve hardware efficiency; moreover,
they have a large potential to achieve significant advantages
by considering the features of SC. From the data
representation perspective, the adjustment of sequence
length can be easily performed by truncation. Note that all
bits in an SC sequence are equivalent, and the encoded
value s is not changed after truncation in terms of
mathematical expectation. As per the Law of Large
Numbers, when the sequence is sufficiently long, the
truncated part (if randomly chosen) still reflects the
proportion of “1”’s in the entire sequence [19]. This means
that any part of a random sequence contains “1”s and “0”’s
in a similar proportion, reflecting the statistical
characteristics of the entire sequence; further analysis and
verification of the impact of sequence truncation are
provided in Section IV.E.

From the perspective of hardware implementation, the
conversion between different data precision in SC (i.e.,
sequence truncation) does not require any additional
conversion unit due to the reasons discussed above.
Moreover, the SC arithmetic circuits can be reused when
applying different sequence lengths.

These advantages make the mixed-precision quantization
principle for SC NNs very flexible and efficient. Therefore,
an ASL scheme is proposed in this paper based on mixed-
precision quantization; its benefits are expected to further
address the issue of NN implementations for energy-
constrained/high-performance platforms in which a
traditional SC design may still incur considerable energy
dissipation or latency.

III. THEORETICAL ANALYSIS

A. SC Truncation Noise Model and Assumptions

In conventional FP NNs, the quantization errors caused
by low bit-width are commonly modeled as additive noise,
and their accumulation through the layers is analyzed
accordingly [26]. Likewise, when considering the SC NN
with a bitstream truncation scheme, we also encounter
random fluctuations introduced by shortened bitstreams;
these fluctuations propagate through the network layers and
may degrade accuracy. Although both scenarios generate
noise, their mechanisms differ slightly: SC depends on
statistical fluctuations due to insufficient sample sizes,
while FP relies on increased quantization errors due to
larger intervals. Unlike the FP format, which involves
distinguishing between high/low bits or exponent-mantissa
segments, SC encodes values using bitstreams in which
every bit is equally significant. Once the bitstream length L
is reduced, the only consequence is an increase in output
variance; the representation grows roughly in inverse
proportion Var « 1/L , rather than dealing with the
exponent shifting or the mantissa clipping in FP formats.

To quantitatively evaluate the accumulation of these
fluctuations in a multi-layer network, we use a model-based

method on local linearity and independent noise, this has
also been applied to FP quantization analysis [26]. The local
linearity is based on the small perturbation assumption,
which states that any truncation or quantization noise
remains sufficiently small compared to the typical neuron
activations, making it feasible to approximate the activation
function f(+) by a first-order Taylor expansion. The second
assumption enables us to treat the errors as independent
additive noise. If the correlation between bitstreams can be
managed (by Sobol sequence or other random sources), the
truncation-induced errors in different layers can be viewed
as independent with zero means. Under these assumptions,
we can apply the superposition principle to analyze the
effects of the noises in each layer on the final output.

Consider the k-th fully connected layer with weight
matrix W, and b, and activation function f; (). Its output is
given by

Yie = fi Widi—1 + bio). (1)
If we only introduce a small truncation noise 7y, into the
k-th layer’s weights, yielding W = W, + 1y, , the updated
output can be written as y, = f; ((Wk + ka)Yk—1 + bk).
Provided that 1y, is sufficiently small, we can approximate
it by

Vi = Vi t kOk-1)6k, O X Ty, (2)

where J, () is the Jacobian evaluated at Wy y,_,. When
multiple layers have zero means, mutually independent
noise terms {rwi}, the resulting perturbations to the final
output Z can be treated in an approximately additive
fashion. In variance terms, we have

Var(Y; rzi) = Var(rzi). 3)

This is very much analogous to FP quantization, in which
quantization errors are likewise modeled as additive noise.
The key difference is that in SC, the truncation noise
depends inversely on the bitstream length L, while in FP
arithmetic, the reduction of the bit-width leads to an
exponentially larger quantization step size.

B. Layer Noise Amplification Capacity

Based on the above assumptions of small perturbations
and independent noise, we can not only analyze noise
accumulation throughout the network, but also further
examine the amplification capacity of each layer during
noise propagation. This paper uses the concept of the
operator norm from adversarial robustness in NNs [28],
[29]. Specifically, the I, operator norm of each layer’s
weight matrix W, quantifies the worst-case amplification
factor that the layer can apply to an input vector, i.e.,

) (4)

which is equivalent to the largest singular value of W,.
Under the assumptions in Section III.A, the SC truncation
noise can be regarded as a slight deviation on a linear
mapping; therefore, if the input is contaminated by noise

[Wixll2

Wi ll, = max
Well. llxllz

x#0
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with norm ||§]|; the worst-case scenario is that the layer
amplifies it to ||W;||/I5]]. The I, operator norm provides a
concise upper bound F = ||W,|| when measuring the
amplification of the noise at a given layer.

The amplification capacity of the activation functions
should also be considered. For the STanh (as applied in this
paper and mathematically equivalent to Tanh), the worst-
case amplification factor does not incur any additional
increase (the maximum gradient value can be taken as 1
with inputs centered around 0); therefore, the single-layer
amplification factor with STanh can still be represented as
F = |[Wll.

In a multi-layer network, the amplification of noise in
each layer occurs sequentially, such that the overall effect
is approximately the product of the operator norms of the
layers. Therefore, if the truncation noise ryy, is injected at
the i-th layer, the amplification upper bound from the i-th
layer to the output layer K is approximately F, =

K_i lIWill. As per the SC scenario, the magnitude of the
truncation noise 7y, scales as ~1/L with the sequence
length L . The theoretical upper bound on the noise
amplitude at the final output can be expressed as

Iz, Il = T T Wil ()

If one or more layers exhibit large ||W, || values, even a
slight truncation noise introduced in the early layers can be
repeatedly amplified by the subsequent layers, resulting in
significant errors in the output. Therefore, layers with larger
accumulated amplification factors are more sensitive to SC
truncation and they generally require longer bitstreams.

According to the analysis, we present theoretical results
of each layer’s amplification factors (F) as well as their
cumulative effect (F,) when cascaded towards outputs in
Table II. The simulations in this paper apply to SC MLPs
the datasets Fashion-MNIST [31], SVHN [32], and
CIFAR10 [33]. In this part, a 6-layer fully connected
network is analyzed as an example, and the analysis focuses
on the first 5 layers (excluding the output layer). More
implementation details are provided in the evaluation
(Section V).

The accumulated amplification factors indicate that if
noise is injected at the very first layer (Layerl), it can be
cumulatively amplified hundreds of times at the final output
(in the worst case), whereas the accumulated amplification
factor of subsequent layers (such as Layer5) is rather small.
This suggests that the early layers of the network are more
sensitive to input noise, so when implementing the SC
truncation strategy, special attention should be paid to
ensuring the stability of these early layers.

Although the theoretical analysis provides accumulated
amplification factors for noises occurring in each layer,
these are merely worst-case estimates based on idealized
assumptions. In practical applications, the sensitivity of
each layer to SC truncation is often affected by many non-
ideal conditions. Therefore, the next subsection focuses on

TABLEII
THEORETICAL RESULTS OF AMPLIFICATION FACTORS F AND
ACCUMULATED AMPLIFICATION FACTORS F, IN SC MLP

Datasets Layerl | Layer2 | Layer3 | Layer4 | LayerS
Fashion F 3.60 2.20 2.19 2.49 2.63
MNIST F, | 11454 31.75 14.47 6.58 2.63

F 4.63 4.55 3.26 2.55 2.39

SVHN F, | 422.83 91.22 20.01 6.13 2.39
F 4.05 3.64 2.76 247 2.86

CIFARIO Fy, | 290.10 71.59 19.61 7.09 2.86

an experimental analysis to evaluate the sensitivity of each
layer and compare it with the theoretical results.

C. Sensitivity Analyses

To quantitatively measure which layer is more sensitive
to SC truncations, we refer to the approach in [26]: inject
varying strengths of truncation noise solely into one layer
(the i-th layer), then measure the accuracy drop A,.. and
record the resulting perturbation 7, in the final output
vector y,.. Under the small-noise assumption in (2), y =
Yk + 17, then the magnitude ”TZi || can be correlated with

the observed A,... When A, reaches a chosen threshold,
we identify the sensitivity (or defined as “importance”) of
that particular layer. If a relatively small noise ”TZi” can
trigger a noticeable accuracy drop, it implies that this layer
notably amplifies errors through subsequent propagation
and thus, it warrants higher precision. Conversely, a layer
capable of tolerating a larger ”TZi” without major
performance degradation allows for more aggressive
truncation.

However, the method in [26] is limited because it only
measures the effect when a single layer is truncated.
Therefore, in this paper, we extend this approach using a
more comprehensive method. The simulation uses the ASL
scheme and grid search over all proper configurations
(combinations of sequence lengths) by recording their
accuracy. In this case, the effects of simultaneously
truncating multiple layers can be clearly reflected in the
output A,.. . Different from directly looking at the
importance by ”TZi || , our approach involves multiple
factors; therefore, a regression model using an RF is applied
to evaluate the effect of the sequence length of each layer
on the inference accuracy (or the importance of each layer).

For comparison purposes, the network structure and
configurations are identical to the ones applied in Section
II1.B. The configuration of sequence lengths can be denoted
as [Lqy, Ly, -+, Lx_1], L; < L; for example, with the full
sequence length of L = 2%, a proper range of truncated
lengths can be set to vary as L; € [26,21°].

In the RF model, the input features are the lengths of each
layer, and the target value is the corresponding accuracy.
With 100 trees, the importance of each feature (sequence
length of different layers) is evaluated by its contribution to
entropy. For example, if the truncation in the i-th layer
leads to more reduction in the entropy for most tree nodes
than other layers, then it is defined to have a so-called larger
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Fig. 3. The importance of the sequence length of each layer in a SC MLP on the inference accuracy. The results are evaluated by random forest on grid
search over all the possible configurations with dataset: (a) Fashion-MNIST; (b) SVHN; (c) CIFAR10.

importance factor. The importance of all layers is
normalized so that their sum is equal to 1; hence, we can get
the importance of each feature (the sensitivity of the layers
in terms of sequence lengths) as shown in Fig. 3. It shows
the impact of truncation at different layers on the inference
accuracy; a higher importance reflects that the truncation of
the specified layer potentially leads to a larger accuracy
degradation. Compared to the method in [26], which injects
noise through truncation in only a single layer, the proposed
RF method not only reveals the isolated impact of
truncation on an individual layer, but also learns the
cumulative contribution of each layer to the final accuracy
under simultaneous multi-layer truncation scenarios.

The results show that the sequence length of the early
layers contributes the most to the inference accuracy. We
have also simulated different networks and layer sizes of SC
MLPs, and there are no obvious changes in the above
conclusion. The first two layers contribute more than 80%
to the inference accuracy; this indicates that the network is
more sensitive to truncation in early layers. The conclusion
is consistent with the theoretical analysis in Section II1.B,
showing that early layers are more sensitive to truncation
due to accumulation effects. By the results in Table 11, we
can estimate the “theoretical importance” of the i-th layer
simply by F,;/ ¥X_,F,,. If we compare the results in Fig. 3
with the “theoretical importance” calculated by the
accumulated amplification factor listed in Table II, the
importance of the first layer for Fashion-MNIST (66.45%)
is similar to the theoretical estimation (67.38%) in Table II;
while that importance for SVHN/CIFAR10
(65.33%/57.81%) is lower than the calculated values in
Table II (77.92%/74.14%). The difference indicates that
non-ideal conditions in practice do not perfectly follow the
assumptions in theory. Also, in extreme cases, such as
applying very short sequence lengths (< 64 bits), the small-
perturbation assumption and linear approximations may not
be wvalid (even though these setting are uncommon in
practice due to severe accuracy loss). Therefore, the next
subsection provides an experiment-based analysis; it is
necessary to design proper truncation strategies based on
both theoretical and empirical sensitivity analysis.

D. Savings in Latency and Energy

Savings in latency and energy are also critical factors
when selecting the truncation strategy. This part estimates
the savings in these overheads by applying the proposed
ASL scheme. As discussed in Section II.B, the latency and
energy are approximately proportional to the sequence
length in the SC implementations. In a pipelined
architecture, MAC units and the sequence generation by
SNGs operate concurrently, so allowing the analysis to
concentrate only on the changes within the sequence
generation process. As for latency, it is not related to layer
size, because all computations within a layer are performed
in parallel. By contrast, energy consumption correlates with
layer size due to the computational load expanding with
more neurons. The saving in energy Savingp (latency,
Saving, ) can be approximated by the ratio of energy
(latency) for the full model Eenrgyy (Latencyy) and the
ASL version Eenrgy,g;, (Ls;):

k-1

. Latenc YL
Saving, = 1 ————2A45L _ 1 2=l ()

Latencyg (k-1)L

k-1

. Eenr, Y Lingn;

Savng =1- JYASL =1- lk—_11 ini z+1’ (7)
Eenrgyp Yic1 Lningyq

where L denotes the original sequence lengths of a k-layer
full model (identical for all the layers) and L; is the
sequence lengths of the corresponding truncated layers. n;
is the feature size of the i-th layer in the network.

By the above equations, the expected savings in latency
and energy are both related to the sum of the sequence
lengths of all layers. The strict trade-off mentioned in
Section II.B limits the use of small sequence lengths, so it
is critical to arrange the configuration in each layer.
Furthermore, the saving in energy benefits more from
truncating the sequences in layers of large size, so those
layers are more worthy of truncation. Note that (6) and (7)
only consider the savings by layer sizes without extra
factors such as hardware optimization and parallelization
overheads. It only serves as a baseline calculation, while
Section V compares the theoretical results (Table IIT) with
an actual hardware evaluation (Table IV). This
demonstrates how practical designs may introduce slight
deviations from the ideal theoretical savings.
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IV. PROPOSED ADJUSTABLE SEQUENCE LENGTH (ASL)
SCHEME

This section first introduces in detail the proposed ASL
scheme with its implementation steps. The truncation
strategy for the proposed ASL scheme is then discussed,
which is critical to assess the trade-off between accuracy
and energy/latency.

A. Overall Approach

The basic principle of the ASL scheme is to reduce the
SC sequence lengths in the computational units; this can be
realized by truncating the full model and inputs during
inference.

Consider a full model of a k-layer SC MLP with sequence
length L as an example. The layer-wise computation
includes the inputs of the i-th layer and the weight matrices
between the i -th layer and the (i + 1) -th layer; the
truncated sequence length of this computation is labeled as
L;. The output layer is not involved in computations, so the
ASL scheme considers the first k—1 layers; the
configuration of the sequence lengths of each layer can be
represented as [Ly, L, -+, Ly_4].

Since all bits in an SC sequence are equivalent, L; bits
are randomly sampled from the original sequence of a full
length L to form the truncated sequence. The ASL scheme

applies truncation to both the weight matrices and the inputs.

During inference, the inputs of each layer are directly

truncated without regeneration. For the weight matrices, the

truncation processes are slightly different when considering
the format of the full model:

1) If the full model is stored in SC format, direct
truncation can be applied to the weights.

2) If the full model is not stored in SC format, for example
in single-precision FP format, the weights need to be
converted into SC format. This can be realized by the
SNGs using truncated Sobol sequences.

Directly truncating the generated SC sequences and
truncating  Sobol  sequences before SNGs are
mathematically equivalent; the use of truncated Sobol
sequences requires lower memory and computational
overheads. The forward propagation is then computed with
the layer-wise truncated weights/inputs according to the
configuration of the sequence lengths. The proposed ASL
scheme is illustrated in Fig. 4, and the flowchart execution
of employing it for a given layer is shown in Fig. 5. The
truncation strategy, which is the critical part of the ASL
scheme, is further discussed in the next subsection.

B. Truncation Strategy: General Principles

The selection of the truncation strategies relies on
distinguishing features of different layers in network
propagation. Even though there is no related research on SC
NN, the strategy can partly refer to the studies in mixed-
precision quantization for FP NNs; for example, [26] and
[27] calculated the optimal bit-width of each layer by
numerical methods. As described in the theoretical analysis
in Section III, layer-wise quantization shares its core
principle with the ASL scheme, as both approaches seek to
reduce overheads by compromising on arithmetic precision.
Their findings provide valuable insights; however, due to
considerable differences in tasks and arithmetic (as
mentioned in Section III), the truncation strategy for SC
NNs requires both a dedicated analysis and simulation-
based experiments.

The theoretical estimation in Section IIL.LB and the
empirical sensitivity analysis in Section III.C offer a clear
view of the distinct characteristics of each layer in SC NN.
It highlights the importance factor of the layers, showing
the impact of their sequence lengths on the accuracy
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degradation. The conclusion is that the network is more
sensitive to the truncation in early layers.

While the proposed operator norm analysis theoretically
shows that the noise injected into early layers can be
cumulatively amplified, additional structural and functional
factors also reinforce this conclusion. Earlier layers
typically carry out the essential feature extraction from the
raw inputs: if these basic features are modified by
truncation noise, subsequent layers will struggle to recover
lost information. Moreover, many networks maintain a
larger number of neurons or parameter sizes in earlier layers,
allowing a stronger capacity for feature learning but also
potentially creating a larger amplification factor. Later
layers often have lower dimensions and operate on more
abstract representations, hence being inherently less
sensitive to truncation errors. Therefore, these factors in
network design (core roles in feature extraction, differences
in layer sizes, and hierarchical abstractions) converge with
our theoretical estimate of accumulated noise amplification
to explain the reasons by which early layers exhibit higher
sensitivity to SC truncations.

According to the above discussions, the ASL scheme can
apply a general consideration of truncation strategies:
Preserve the full sequence length in early layers (closest to
the inputs) while truncating the latter layers (closer to the
outputs). This strategy focuses on reducing the overheads
of SC NNs at a very much reduced accuracy loss compared
to the full-precision model. Based on this principle, we
introduce two distinct truncation strategies, a coarse-
grained approach and a fine-grained approach, tailored to
different application scenarios.

By the theoretical analysis in Section III, we can also
intuitively infer how the truncation strategy should be
modified with network architecture and data characteristics.
Increasing the network depth generally amplifies truncation
noise introduced in the early layers, due to the cumulative
multiplication effect through successive operator norms.
Likewise, higher data complexity (e.g., high-resolution
images or multi-channel inputs) forces earlier layers to
retain more detailed feature information. Consequently, in
both scenarios, a more fine-grained scheme (that is
discussed in the next subsections) is often needed to
preserve enough precision.

In this paper, we only consider the implementation of

fashionmnist

- 1.0

svhn

ASL in small-scale NN architectures, because for large-
scale models such as transformers SC implementations may
remain uncommon due to stringent latency and hardware
constraints. A full quantitative exploration of the guidance
of complex network topologies and diverse data
distributions on layer-wise truncation is left for future work.

C. Coarse-grained Truncation Strategy

For the datasets and applications with no prior
information, we can apply a coarse-grained truncation
strategy; this applies generalized configurations that have
satisfactory performance in most of the tasks. Based on the
findings from the sensitivity analysis, the early layers of the
network are critical for maintaining accuracy; therefore, to
minimize degradation, truncation within the ASL scheme
should primarily target the latter layers.

The use of the coarse-grained strategy depends on the
general conclusion of sensitivity analysis in Section III.C.
Assuming the original sequence lengths are equal L in each
layer of a baseline SC model, the ASL scheme keeps the
first layer unchanged and truncates the remaining layers.
The ratio of truncation can be approximately determined by
the sensitivity analysis in Fig. 3, for example, the
importance of the second layer falls in the range of [1/4, 1/2]
of the importance of the first layer. Since the length of the
stochastic sequence is typically in the form of a power of 2,
we select the factor of 1/2 as a generalized truncation
strategy (taking the upper bound as a safe choice to preserve
accuracy). Similarly, we can further truncate the remaining
layers by a similar approach, and the general strategy can
be averaged considering the results from all the datasets.
Therefore, the overall coarse-grained truncation strategy
can be represented as [L,L/2,L/4,--+,L/4]. Once the
sequence length L is determined, the theoretical savings in
energy and latency can be calculated by (6) and (7). The
performance of this generalized ASL configuration is
evaluated in Section V.

D. Fine-grained Truncation Strategy

While the generalized truncation strategy is effective in
many scenarios, it may not always provide an optimized
balance between accuracy and energy/latency savings. To
enhance performance, a fine-grained truncation approach
can be applied. Testing a wide range of configurations on a
large dataset can be costly, thus, employing a smaller,
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MNIST; (b) SVHN; (c) CIFARI10. The points denote configurations with different truncation strategies.
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randomly selected subset is a practical solution. This subset
can be treated as statistically representative of the entire
dataset during inference, so allowing for the identification
of consistent patterns. Cross-validation confirms that the
fine-grained strategy is effective across both subsets and the
complete dataset.

Utilizing a grid search to explore all viable
configurations of sequence lengths on the chosen subset
allows for detailed tracking of the accuracy loss. The
implementation of the sensitivity analysis as preliminary
knowledge can enhance efficiency, such as by maintaining
a constant sequence length for the critical first layer to
reduce the computational demands in the grid search. For
each configuration, the expected savings in energy and
latency can be calculated by (6) and (7). The results are
illustrated in Fig. 6, in which the point with 100% savings
in both energy and latency indicates the baseline no
accuracy loss. We can observe similar patterns showing the
trade-off between accuracy loss and savings. Notably,
certain configurations stand out by offering substantial
savings while reducing the accuracy loss.

The score for the savings can be calculated as

score = aSavingg + (1 — a) Saving,, (8)

where « is the weight balancing the importance of the

energy and latency savings; it can be determined by the

requirement of specific implementations, for example, this
paper applies @ = 0.5 for identical importance of the two
terms. For a given threshold of accuracy loss (A, <

0.1%), it is possible to find the configuration corresponding

to the point that achieves the highest score. Such

configuration can be applied as the fine-grained strategy of
the ASL scheme.

Therefore, the fine-grained strategy can be summarized
in the following algorithmic steps:

1) Randomly select a subset from the given dataset.

2) Grid search by inferencing all possible configurations
(with a proper range of truncated lengths such as L; €
[26,219]) over the selected subset and recording the
corresponding accuracy loss. The conclusions from the
sensitivity analysis can be applied to reduce candidate
configurations to evaluate.

3) Calculate the expected savings in energy and latency
by equations (6) and (7).

4) Determine the overall score of the configurations by
equation (8).

5) For a given threshold of accuracy loss, find the
configuration achieving the highest saving score.

According to previously presented simulation results, the
configuration selected by such a process is expected to
achieve a better performance than the coarse-grained
strategy during the inference of full datasets. A detailed
evaluation of the fine-grained truncation strategy is
presented in Section V.

E. Implementation of RNGs

The ASL scheme can be realized by applying truncated
Sobol sequences in the SNGs. This subsection details the
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Fig. 7. Distribution of pseudo-random numbers generated by an LFSR
truncated to a length of (a) 1024 (original); (b) 512; (c) 256; (d) 128.
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Fig. 8. Comparison of SC MLPs with truncated and directly generated
sequences using LFSR or Sobol as RNGs: (a) Averaged MSE; (b)
Accuracy Loss. Fashion-MNIST is used and the results are calculated
using the single-precision FP implementation as baseline.

implementation of the RNGs, hence justifying the use of
Sobol sequences. To achieve accurate computation, SC
arithmetic requires an adequate length for the stochastic
sequences involved. Since the proposed ASL scheme relies
on truncated stochastic sequences, low correlation must be
preserved after truncations.

RNGs in SC NNs are usually implemented by LFSRs or
Sobol sequences. An LFSR is a streamlined technique for
pseudo-random number generation, utilizing a basic binary
shift register and linear feedback rules based on a specific
polynomial. Its simplicity allows for the fast generation of
pseudo-random sequences with desirable statistical
properties. As used for generating quasi-random sequences,
Sobol sequences differ from LFSRs because they prioritize
the uniform distribution across multi-dimensional spaces.

When implementing the ASL scheme with truncated
stochastic sequences, the application of a LFSR is limited.
As directly truncated stochastic sequences are equivalent to
stochastic sequences produced from truncated random
sequences, Fig. 7 provides its intuitive illustration: the
original random numbers generated by the LFSR (with a
length of 1024) exhibit satisfactory statistical properties
(they can be guaranteed by well-selected polynomials and
seeds). However, truncation disrupts the uniform
distributions (Fig. 7 (b), (c), and (d)), with the deviation
intensifying as the length of the truncated sequences
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decreases. By contrast, Sobol-generated SC sequences
maintain a consistent advantage due to their strict inherent
uniform distribution [21], irrespective of truncation;
therefore, Sobol sequences are the preferred choice for
RNGs in the ASL scheme.

Next, an evaluation by simulation can be used to
intuitively compare the performance of those two cases of
SC MLPs. The stochastic sequences generated by truncated
LFSR/Sobol sequences are compared with those generated
by directly produced LFSR/Sobol sequences, encoding
identical values (the latter approach can employ proper
seeds, so it can always ensure low correlation). Like in
Section II.C, the MSE of an SC implementation in the
critical MAC units and the accuracy loss of SC NN are
evaluated by comparing them with the traditional single-
precision FP implementation. The results for dataset
“Fashion-MNIST” in an MLP with an identical
configuration as in Section II.C are presented in Fig. 8 as an
example (the original stochastic sequence length before
truncation is 1024).

The results indicate that the LFSR version suffers a large
difference between the truncated version and the directly
generated version, confirming its inadequacy for the
truncation scheme as previously concluded. However, the
Sobol-based truncated SC sequences show MSE and
inference accuracy levels comparable to those of the
directly generated sequences (with the same length and
encoded values). This confirms the feasibility of the
proposed scheme: when truncated Sobol sequences are
utilized in RNGs, the ASL emerges as an effective strategy,
achieving negligible degradations in overall performance.

V. PERFORMANCE EVALUATION

This section conducts simulations to assess the
performance of the ASL scheme with datasets Fashion-
MNIST [31], SVHN [32], and CIFAR10 [33] (one channel
is used as input for each image in SVHN and CIFAR10).
For each dataset, the scheme is evaluated by the validation
set with 10,000 images. The SC MLPs are implemented
based on the design of [25]; STanh is applied as the
activation function, and MLPs with different sequence
lengths are trained as baseline models. For the coarse-
grained truncation strategy, this paper uses the
configuration [L, L/2,L/4,--+,L/4] as discussed in Section
IV.IIL

When applying the fine-grained truncation strategy and
for comparison purposes, the threshold of the accuracy loss
is set to be the same as the coarse-grained strategy. The
configurations with the best performances are selected
based on the pattern tested on a subset with 5% size of the
original dataset. The detailed configurations of the
sequence length in each layer are presented in Table III.

A. Implementation of SC NNs

Before conducting the evaluation, the hardware
implementation of SC NNs considered in this paper is
described. As introduced in Section II.A, the
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Fig. 9. The hardware design of an SC NN: (a) implementation of the
layer propagation including SNGs, MAC with a pipelined adder tree and
activation function; (b) the Sobol sequence generator (i.e., RNG) in an
SNG.

implementation of SC NNs mainly includes the circuits for
performing MAC and the activation function. Fig. 9 (a)
shows the design for a layer propagation. Different from the
direct inputs in traditional FP networks, the inputs of SC
need SNGs to generate uncorrelated stochastic sequences.
To implement the MAC, a network of XNOR gates is
required to perform multiplication between the stochastic
sequences generated for the inputs and their related weights;
then, the adder tree accumulates these SC products based on
a multiplexer tree; the adder tree contains a pipeline stage
to meet the tight timing constraints. By moving forward in
the adder tree, the number of adders in each level decreases;
therefore, the pipeline stage is placed from the output side
to decrease the complexity of the sequential logic.

For implementing the activation function, a stochastic
approximation to Tanh (STanh) is utilized after the ESL-
based MAC process. It is implemented using a LFSM as the
design proposed in [23]. The use of the clock in the LFSM-
based activation function introduces a further sequential
logic in the design to perform as another level of pipelining.

For the SNG implementation, this paper applies the
Sobol sequence to maintain a low correlation as discussed
in Section IV.E. The RNG, i.c., the Sobol sequence
generator, is designed according to the scheme presented in
[21], [24]. As shown in Fig. 9 (b), its hardware design
includes a counter for generating index i and then a priority
encoder for generating the signal m according to the index
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and its leading zero position. Signal m represents the
required vector’s (V;,,) address that is saved in the Look Up
Table (LUT) beforehand. The final Sobol sequence is
obtained after reading this vector and XORing it with the
Sobol sequence generated in the previous cycle (g;_,). Such
Sobol sequence is then compared with the comparator in the
SNG to generate the stochastic sequence.

The above units have been proven to be efficient for SC
NN design, and their implementation details are described
in related works [18], [22], [23]. Based on these units, a
fully parallel network is implemented, i.e., the operation of
each neuron in the network is independently performed,
regardless of the layer. However, this does not imply that a
neuron’s value is generated in one cycle. Since in SC, the
final value of a neuron is dependent on the sequence, the
fully parallel implementation operates on a bit basis of the
sequence per cycle; therefore, the total latency of the design
is only related to the sequence length and independent of
the network size due to the full parallelization. To address
the critical path delay, if the number of neurons in the
previous layer (input or hidden layer) is significantly large,
the number of adder stages for the accumulation design of
Fig. 9 (a) increases, this causes an increase in total critical
path delay. To address this delay problem, a pipeline stage
is inserted from the outer side of the accumulator; this
scheme also reduces the number of registers, because the
number of bits is reduced by moving toward the end of the
adder stages. This scheme may increase the complexity of
the design, but it improves its performance and can achieve
a high operating frequency (i.e., 1 GHz in this paper).
Further details of the parallel SC NN design with pipeline
can be found in [25]. Such a design is taken as a baseline to
conduct the hardware evaluation for the proposed ASL
scheme in Section V.C.

In the hardware implementation, we employ both
pipelining and parallel design so that each neuron’s bit-
serial operation can complete within the original 1 ns timing
constraint. Specifically, even if the network scales up or the
bitstream is truncated to a different length, the critical path
does not grow beyond the synthesizable limit. Instead, the
core logic of each neuron remains confined to one pipeline
stage, thereby sustaining the same 1 ns clock period. This
design ensures that the overall latency is linearly dependent
on sequence length and is not affected by layer sizes; the
design preserves sufficient timing margins under varying
network configurations and truncation scenarios.

B. Theoretical Savings in Latency and Energy

For the strategies proposed in the previous section, we
obtained the coarse-grained and fine-grained configurations
for SC MLPs with the proposed ASL scheme. For
comparison purposes, we can first estimate the savings by
the given strategies to confirm the theoretical analysis
presented in Section III.D. Table III lists the estimated
savings in energy and latency calculated by equations (6)
and (7). The savings in latency are only dependent on the
sequence lengths, irrespective of the layer size, making
them consistent across various datasets with the same
configuration. This consistency is evidenced by the coarse-
grained strategy that delivers the same savings of 55%. The
savings in energy are related to the layer sizes. Since for the
proposed scheme it has been suggested to truncate the latter
layers, then the networks with a smaller first layer tend to
gain more benefits; hence, Dataset Fashion-MNIST
achieves a larger energy saving (up to 40.6%) than dataset
SVHN/CIFARIO (up to 36.9%) with the same
configuration. Moreover, the fine-grained strategy allows
the use of small sequence lengths with specified datasets,
while satisfying the accuracy threshold; hence, these
configurations lead to larger savings in both energy and
latency. As evaluated by a pipelined design, the savings in
practice are further assessed in the next subsection.

C. Performance and Hardware Evaluation

The mixed-precision quantization for the FP NNs has
been widely studied and can achieve a significantly larger
compression rate, such as sub-byte representations with an
increased accuracy degradation [26], [27]. Given the
differences between FP and SC in network implementations,
a direct comparison between truncation strategies of those
arithmetic is not feasible. While mixed-precision FP papers
do not typically discuss hardware evaluations, they require
additional overheads for format conversions, including bias
adjustments in exponent bits and roundings in mantissa bits
or a specially designed fused MAC [30]. These overheads
become more pronounced with frequent layer-wise format
conversions and larger network sizes. However, as outlined
in Section II.C, mixed-precision SC strategies can be
straightforwardly implemented by truncating the same
stochastic sequences, thereby dramatically reducing the
conversion overhead.

This section focuses on highlighting the benefits of
mixed-precision techniques in SC and assessing the
network performance with or without the proposed ASL
scheme. A case study is presented in which the performance

TABLEIII
THEORETICAL SAVINGS IN ENERGY AND LATENCY BY THE ASL SCHEME (COMPARED TO FULL MODEL WITH L=1024, K=6).
o s o s
Dataset Layer sizes Truncation strategy Configuration VoSavings in VoSavings in
energy latency
. 784-1024-1024-512- Coarse-grained [2'9,2°, 28, 28 28] 40.6% 55.0%
Fashion-MNIST 256-10 Fine-grained [27. 2%, 27,25, 27] 44.2% 65.0%
1024-1024-1024-512- Coarse-grained [2'9, 2%, 28,28 28] 36.9% 55.0%
SVHN - - 1079 78 6 6
256-10 Fine-grained [27°, 27, 2%, 2° 2] 37.8% 62.5%
1024-1024-1024-512- Coarse-grained [210 29 28 28, 28] 36.9% 55.0%
CIFARIO - - 1079 A8 A7 A6
256-10 Fine-grained [2°7,27,2°,2',2°] 37.6% 61.3%
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TABLEIV
PERFORMANCE OF THE ASL SCHEME IN HARDWARE EVALUATION WITH DIFFERENT CONFIGURATION (COMPARED TO FULL MODEL WITH L=1024).
Dataset Layer sizes Baseline Truncation Energy #Cycles Accuracy %Savings in %Savings in
Accuracy strategy (mJ) Loss energy latency
Fashion- 784-1024-1024- 91.98% Coarse-grained 4.08 2309 0.083% 46.59% 54.95%
MNIST 512-256-10 e Fine-grained 3.83 1797 0.083% 49.83% 64.94%
1024-1024-1024- o Coarse-grained 4.75 2309 0.040% 42.82% 54.95%
SVHN 512-256-10 90.42% Fine-grained 4.68 1925 0.040% 43.64% 62.44%
1024-1024-1024- o Coarse-grained 4.75 2309 0.098% 42.82% 54.95%
CIFARIO 512-256-10 64.86% Fine-grained 4.70 1989 0.095% 43.38% 61.19%

of ASL is evaluated by hardware design. For illustration
purposes, we set the sequence lengths of the full models to
L =1024. A 1 GHz stochastic MLP [25] is designed using
Verilog HDL and synthesized using Cadence Genus at a 32
nm technology node; the timing constraint is set to 1 ns. The
results for the SC MLPs with the two ASL truncation
strategies (with the detailed configurations listed in Table
IIT) are presented in Table I'V.

In our simulation, the delays are identical (1ns) for
neurons with different SC lengths (as per timing constraint
in the synthesis process), while the total number of clock
cycles is proportional to the SC length; therefore, for the
pipelined design with the same NN topology and truncation
strategy, the percentage of savings in latency is identical,
while the percentage of savings in energy is dependent on
layer sizes. As per Table IV, the ASL scheme with a coarse-
grained truncation strategy achieves energy savings of
46.59% (42.82%/42.82%) for the dataset Fashion-MNIST
(SVHN/CIFAR10), and identical savings of 54.95% in
latency across the datasets. The fine-grained strategy
achieves larger savings, especially in latency, with a similar
level of accuracy loss; it achieves energy savings of 49.83%
(43.64%/43.38%) on Fashion-MNIST (SVHN/CIFAR10),
and latency savings of 64.94% (62.44%/61.19%) on
Fashion-MNIST (SVHN/CIFAR10). Overall, the synthesis
results of latency are very close to the theoretical estimation
in Table III (the differences are < 0.1%), while the savings
in energy are larger than the estimated results. The main
reason is that the power of layer propagation is not strictly
linear to the layer sizes, leading to a deviation compared
with the theory in Section III.D.

The accuracy of SC NNs when employing different
strategies in the ASL scheme is also evaluated and
compared. The simulation is performed in Pytorch using the
functionally equivalent network implementation and results
are also provided in Table IV. For the full model with a
sequence length of L = 1024, the accuracy loss threshold
is set to Ay < 0.1% when selecting the fine-grained
strategies; this is negligible, especially compared with the
inherent quantization (rounding) errors of SC formats.

Overall, as per the simulation results, the coarse-grained
strategy should satisfy the requirement of most tasks; if
further improvements are required, the fine-grained strategy
can be applied with some additional costs in improving the
configurations. In summary, the case study shows
significant savings in overheads with negligible accuracy
loss by applying the ASL scheme to SC MLPs, so

confirming the efficiency of the proposed method in source-
limited applications.

VI. CONTRIBUTIONS

This paper introduces a novel layer-wise truncation ASL
scheme. To the best of the authors' knowledge, there is no
related research on mixed-precision SC implementations.
The presented work also diverges from traditional FP
mixed-precision methods by focusing on stochastic
bitstreams, in which every bit is equally significant. Unlike
FP quantization, which relies on discrete bit-width
adjustments often demanding expensive exponent or
mantissa manipulations, ASL simply truncates bitstreams in
SC. It significantly reduces the energy/latency overhead
and maintains adequate precision. This difference is
particularly relevant to constrained scenarios such as IoT
and further addresses the advantages of SC with area and
power limitations.

Beyond these architectural differences, our work
presents a unified theoretical and empirical framework. An
operator-norm—based model captures worst-case noise
accumulation across layers, highlighting the amplification
of the truncation noise from early to deeper layers. The
theory has then been validated with an improved RF-based
sensitivity analysis that covers multi-layer truncation
scenarios. By incorporating Sobol sequences instead of
LFSRs, the proposed scheme ensures that truncated
bitstreams retain a low correlation, which is an important
challenge that prior SC works had not thoroughly
addressed.

From a practical application perspective, our results
show that the proposed coarse-grained and fine-grained
truncation schemes achieve over 60% energy and latency
savings with negligible accuracy loss, validated on
hardware synthesized at the 32 nm technology node. As IoT
devices require small overhead and real-time
responsiveness, the ability to adjust sequence lengths on a
layer-wise basis offers a powerful approach for balancing
efficiency and accuracy. This further facilitates the use of
SC NNs in edge and embedded systems in which
conventional FP hardware proves costly. By theoretical
modeling and hardware evaluation, this paper offers an
effective approach toward high-performance, low-power
SC implementations suitable for next-generation IoT and
other resource-constrained ML applications.
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VII. CONCLUSION AND FUTURE WORK

This paper has introduced the ASL scheme for SC NN,
a novel layer-wise truncation approach that significantly
reduces the overhead while preserving high accuracy in
resource-constrained  platforms. Through theoretical
analysis and an extended multi-layer sensitivity evaluation,
we have shown that noise in early layers can be
cumulatively amplified, thereby motivating the need for
maintaining longer bitstreams at those layers.

This paper has further proposed two complementary
strategies, a coarse-grained approach for general tasks and
a fine-grained grid-search-based approach for scenarios
requiring tighter trade-offs. By exploiting Sobol sequences,
this paper has also addressed correlation issues in truncated
bitstreams, presenting the scheme of layer-wise truncation
for practical SC implementations. The hardware evaluation
of a pipelined SC MLP has confirmed that ASL achieves
significant energy and latency savings (exceeding 60% in
certain cases) with negligible accuracy degradation.

Future work is directed to extend ASL to more complex
architectures such as convolutional or recurrent NNs and
explore adaptive or dynamic truncation strategies;
incorporating techniques from traditional FP networks such
as quantization-aware training can potentially further refine
the SC truncation scheme. Additionally, investigating
hardware-aware optimizations would enable a tighter
integration of ASL into energy-limited devices. This can
further address the advantages of SC NNs in IoTs and edge
computing applications.

REFERENCES

[1] T.M. Mitchell and S. B. Thrun, "Explanation-based neural network
learning for robot control," Advances in Neural Information
Processing Systems, pp. 287-294, 1992.

[2] Y. Tian, S. Peng, X. Zhang, et al., "A recommender system for
metaheuristic algorithms for continuous optimization based on deep
recurrent neural networks," IEEE Trans. on Artificial Intelligence,
vol. 1, no. 1, pp. 5-18, 2020.

[31 Y. Goldberg, "Neural network methods for natural language
processing," Synthesis Lectures on Human Language Technologies,
vol. 10, no. 1, pp. 1-309, 2017.

[4] Y.Liu, S. Liu, Y. Wang, et al., "A survey of stochastic computing
neural networks for machine learning applications," IEEE Trans. on
Neural Networks and Learning Systems, vol. 32, no. 7, pp. 2809-
2824,2021.

[51 A. Ramesh, P. Dhariwal, A. Nichol, et al., "Hierarchical Text-
Conditional Image Generation with CLIP Latents," 2022.

[6] S. Bagchi et al.,, "New Frontiers in IoT: Networking, Systems,
Reliability, and Security Challenges," in IEEE Internet of Things
Journal, vol. 7,no0. 12, pp. 11330-11346, 2020.

[71 B.Mao, F. Tang, Y. Kawamoto, and N. Kato, “Al Models for Green
Communications Towards 6G,” [EEE Communications Surveys
Tutorials, vol. 24, no. 1, pp. 210-247,2022.

[8] B.Mao, Y. Kawamoto, and N. Kato, “Al-Based Joint Optimization
of QoS and Security for 6G Energy Harvesting Internet of Things,”
IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7032—7042, 2020.

[91 T. Koketsu Rodrigues, S. Verma, Y. Kawamoto, N. Kato, M. M.
Fouda and M. Ismail, "Smart Handover With Predicted User
Behavior Using Convolutional Neural Networks for WiGig
Systems," in IEEE Network, vol. 38, no. 4, pp. 190-196, July 2024.

[10] S.Yao, Y. Zhao, A. Zhang, et al., "Deep learning for the internet of
things," Computer, vol. 51, no. 5, pp. 32—41, 2018.

[11] Z. Wang, P. Reviriego, F. Niknia, et al., "Adaptive Resolution
Inference (ARI): Energy Efficient Machine Learning for the Internet
of Things," in IEEE Internet of Things Journal, 1, vol. 11, no. 8, pp.
14076-14087, 2024.

[12] S. A. R. Zaidi, A. M. Hayajneh, M. Hafeez and Q. Z. Ahmed,
"Unlocking Edge Intelligence Through Tiny Machine Learning
(TinyML)," in [EEE Access, vol. 10, pp. 100867-100877, 2022.

[13] M. Li, Y. Li, Y. Tian, L. Jiang and Q. Xu, "AppealNet: An Efficient
and Highly-Accurate Edge/Cloud Collaborative Architecture for
DNN Inference," 2021 58th ACM/IEEE Design Automation
Conference (DAC), San Francisco, CA, USA, pp. 409-414, 2021.

[14] Z.Ma, M. Xiao, Y. Xiao, Z. Pang, H. V. Poor and B. Vucetic, "High-
Reliability and Low-Latency Wireless Communication for Internet
of Things: Challenges, Fundamentals, and Enabling Technologies,"
in IEEE Internet of Things Journal, vol. 6, no. 5, pp. 7946-7970,
2019.

[15] A. Alaghi and J. P. Hayes, "Survey of stochastic computing," ACM
Trans. on Embedded computing systems, vol. 12, no. 2s, pp. 1-19,
2013.

[16] M. Uzair and N. Jamil, "Effects of Hidden Layers on the Efficiency
of Neural networks," 2020 IEEE 23rd International Multitopic
Conference (INMIC), Bahawalpur, Pakistan, pp. 1-6, 2020.

[17] G. Li, et al., "Understanding error propagation in deep learning
neural network (DNN) accelerators and applications." Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1-12,2017.

[18] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, "A stochastic
computational multi-layer perceptron with backward propagation,"
IEEE Trans. on Computers, vol. 67,n0. 9, pp. 1273-1286, 2018.

[19] F. M. Dekking, C. Kraaikamp, H. P. Lopuhad, & L. E. Meester, "A
Modern Introduction to Probability and Statistics: Understanding
why and how," Springer Science & Business Media, 2006.

[20] S. Liu, H. Jiang, L. Liu, et al., "Gradient Descent Using Stochastic
Circuits for Efficient Training of Learning Machines," in [EEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2530-2541, Nov. 2018.

[21] S. Liu and J. Han, "Toward Energy-Efficient Stochastic Circuits
using Parallel Sobol Sequences," IEEE Transaction on Very Large
Scale Integration (VLSI) Systems, vol. 26,n0. 7, pp. 1326-1339,2018.

[22] B. R. Gaines, "Stochastic computing systems, " Advances in
Information Systems Science, Springer: Boston, MA, pp. 37-172,
1969.

[23] B. D. Brown and H. C. Card, "Stochastic neural computation I:
computational elements," IEEE Trans. on Computers, vol. 50, no. 9,
pp. 891-905, 2001.

[24] L L. Dalal, D. Stefan and J. Harwayne-Gidansky, "Low discrepancy
sequences for Monte Carlo simulations on reconfigurable
platforms," 2008 International Conference on Application-Specific
Systems, Architectures and Processors, Leuven, Belgium, 2008, pp.
108-113.

[25] Z. Wang, F. Niknia, S. Liu, et al., “Analysis, Design and Evaluation
of a High-Performance Stochastic Multilayer Perceptron: from Mini-
Batch Training to Inference,” Techrxiv, 2022.

[26] Y. Zhou, et al, "Adaptive quantization for deep neural
network," Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

[27] Z.Dong, Z. Yao, A. Gholami, M. W. Mahoney, K. Keutzer, "Hawq:
Hessian aware quantization of neural networks with mixed-
precision," Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 293-302, 2019.

[28] 1. Goodfellow, "Deep learning," MIT press, Vol. 196, 2016.

[29] T. Miyato, T. Kataoka, M. Koyama, & Y. Yoshida, "Spectral
Normalization for Generative Adversarial Networks," in
International Conference on Learning Representations,2018.

[30] F. Niknia, Z. Wang, S. Liu, et al., "A Configurable Floating-Point
Fused Multiply-Add Design with Mixed Precision for Al
Accelerators," TechRxiv, 2024.

[t

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2025.3563942

H. Xiao, K. Rasul and R. Vollgraf, "Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms," in arXiv
preprint arXiv:1708.07747,2017.

Y. Netzer, T. Wang, A. Coates, et al., "Reading digits in natural
images with unsupervised feature learning," 2011.

A. Krizhevsky and G. Hinton, "Learning multiple layers of features
from tiny images," Citeseer, 2009.

S. Liu, J. L. Rossello, S. Liu, et al., “From Multipliers to Integrators:
A Survey of Stochastic Computing Primitives,” IEEE Transactions
on Nanotechnology, vol. 23, pp. 238-249, 2024.

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



